scholarly journals rdmc: An Open Source R Package Implementing Convergent Adaptation Models of Lee and Coop (2017)

2020 ◽  
Vol 10 (9) ◽  
pp. 3041-3046
Author(s):  
Silas Tittes

Abstract The availability of whole genome sequencing data from multiple related populations creates opportunities to test sophisticated population genetic models of convergent adaptation. Recent work by Lee and Coop (2017) developed models to infer modes of convergent adaption at local genomic scales, providing a rich framework for assessing how selection has acted across multiple populations at the tested locus. Here I present, rdmc, an R package that builds on the existing software implementation of Lee and Coop (2017) that prioritizes ease of use, portability, and scalability. I demonstrate installation and comprehensive overview of the package’s current utilities.

2020 ◽  
Author(s):  
Silas Tittes

ABSTRACTThe availability of whole genome sequencing data from multiple related populations creates opportunities to test sophisticated population genetic models of convergent adaptation. Recent work by Lee and Coop (2017) developed models to infer modes of convergent adaption at local genomic scales, providing a rich framework for assessing how selection has acted across multiple populations at the tested locus. Here I present, rdmc, an R package that builds on the existing software implementation of Lee and Coop (2017) that prioritizes ease of use, portability, and scalability. I demonstrate installation and comprehensive overview of the package’s current utilities.


2020 ◽  
Vol 21 (1) ◽  
Author(s):  
Giulio Caravagna ◽  
Guido Sanguinetti ◽  
Trevor A. Graham ◽  
Andrea Sottoriva

Abstract Background The large-scale availability of whole-genome sequencing profiles from bulk DNA sequencing of cancer tissues is fueling the application of evolutionary theory to cancer. From a bulk biopsy, subclonal deconvolution methods are used to determine the composition of cancer subpopulations in the biopsy sample, a fundamental step to determine clonal expansions and their evolutionary trajectories. Results In a recent work we have developed a new model-based approach to carry out subclonal deconvolution from the site frequency spectrum of somatic mutations. This new method integrates, for the first time, an explicit model for neutral evolutionary forces that participate in clonal expansions; in that work we have also shown that our method improves largely over competing data-driven methods. In this Software paper we present mobster, an open source R package built around our new deconvolution approach, which provides several functions to plot data and fit models, assess their confidence and compute further evolutionary analyses that relate to subclonal deconvolution. Conclusions We present the mobster package for tumour subclonal deconvolution from bulk sequencing, the first approach to integrate Machine Learning and Population Genetics which can explicitly model co-existing neutral and positive selection in cancer. We showcase the analysis of two datasets, one simulated and one from a breast cancer patient, and overview all package functionalities.


2019 ◽  
Vol 20 (S9) ◽  
Author(s):  
Mattia Dalsass ◽  
Margherita Bodini ◽  
Christophe Lambert ◽  
Marie-Cécile Mortier ◽  
Marco Romanelli ◽  
...  

Abstract Background Multi-locus sequence typing (MLST) is a standard typing technique used to associate a sequence type (ST) to a bacterial isolate. When the output of whole genome sequencing (WGS) of a sample is available the ST can be assigned directly processing the read-set. Current approaches employ reads mapping (SRST2) against the MLST loci, k-mer distribution (stringMLST), selective assembly (GRAbB) or whole genome assembly (BIGSdb) followed by BLASTn sequence query. Here we present STRAIN (ST Reduced Assembly IdentificatioN), an R package that implements a hybrid strategy between assembly and mapping of the reads to assign the ST to an isolate starting from its read-sets. Results Analysis of 540 publicly accessible Illumina read sets showed STRAIN to be more accurate at correct allele assignment and new alleles identification compared to SRTS2, stringMLST and GRAbB. STRAIN assigned correctly 3666 out of 3780 alleles (capability to identify correct alleles 97%) and, when presented with samples containing new alleles, identified them in 3730 out of 3780 STs (capability to identify new alleles 98.7%) of the cases. On the same dataset the other tested tools achieved lower capability to identify correct alleles (from 28.5 to 96.9%) and lower capability to identify new alleles (from 1.1 to 97.1%). Conclusions STRAIN is a new accurate method to assign the alleles and ST to an isolate by processing the raw reads output of WGS. STRAIN is also able to retrieve new allele sequences if present. Capability to identify correct and new STs/alleles, evaluated on a benchmark dataset, are higher than other existing methods. STRAIN is designed for single allele typing as well as MLST. Its implementation in R makes allele and ST assignment simple, direct and prompt to be integrated in wider pipeline of downstream bioinformatics analyses.


Heredity ◽  
2021 ◽  
Author(s):  
Axel Jensen ◽  
Mette Lillie ◽  
Kristofer Bergström ◽  
Per Larsson ◽  
Jacob Höglund

AbstractThe use of genetic markers in the context of conservation is largely being outcompeted by whole-genome data. Comparative studies between the two are sparse, and the knowledge about potential effects of this methodology shift is limited. Here, we used whole-genome sequencing data to assess the genetic status of peripheral populations of the wels catfish (Silurus glanis), and discuss the results in light of a recent microsatellite study of the same populations. The Swedish populations of the wels catfish have suffered from severe declines during the last centuries and persists in only a few isolated water systems. Fragmented populations generally are at greater risk of extinction, for example due to loss of genetic diversity, and may thus require conservation actions. We sequenced individuals from the three remaining native populations (Båven, Emån, and Möckeln) and one reintroduced population of admixed origin (Helge å), and found that genetic diversity was highest in Emån but low overall, with strong differentiation among the populations. No signature of recent inbreeding was found, but a considerable number of short runs of homozygosity were present in all populations, likely linked to historically small population sizes and bottleneck events. Genetic substructure within any of the native populations was at best weak. Individuals from the admixed population Helge å shared most genetic ancestry with the Båven population (72%). Our results are largely in agreement with the microsatellite study, and stresses the need to protect these isolated populations at the northern edge of the distribution of the species.


Sign in / Sign up

Export Citation Format

Share Document