scholarly journals Quantifying Evidence for Candidate Gene Polymorphisms: Bayesian Analysis Combining Sequence-Specific and Quantitative Trait Loci Colocation Information

Genetics ◽  
2007 ◽  
Vol 177 (4) ◽  
pp. 2399-2416 ◽  
Author(s):  
Roderick D. Ball
2021 ◽  
Vol 12 ◽  
Author(s):  
Ling Qiao ◽  
Justin Wheeler ◽  
Rui Wang ◽  
Kyle Isham ◽  
Natalie Klassen ◽  
...  

Cadmium (Cd) is a heavy metal that can cause a variety of adverse effects on human health, including cancer. Wheat comprises approximately 20% of the human diet worldwide; therefore, reducing the concentrations of Cd in wheat grain will have significant impacts on the intake of Cd in food products. The tests for measuring the Cd content in grain are costly, and the content is affected significantly by soil pH. To facilitate breeding for low Cd content, this study sought to identify quantitative trait loci (QTL) and associated molecular markers that can be used in molecular breeding. One spring wheat population of 181 doubled haploid lines (DHLs), which was derived from a cross between two hard white spring wheat cultivars “UI Platinum” (UIP) and “LCS Star” (LCS), was assessed for the Cd content in grain in multiple field trials in Southeast Idaho, United States. Three major QTL regions, namely, QCd.uia2-5B, QCd.uia2-7B, and QCd.uia2-7D, were identified on chromosomes 5B, 7B, and 7D, respectively. All genes in these three QTL regions were identified from the NCBI database. However, three genes related to the uptake and transport of Cd were used in the candidate gene analysis. The sequences of TraesCS5B02G388000 (TaHMA3) in the QCd.uia2-5B region and TraesCS7B02G320900 (TaHMA2) and TraesCS7B02G322900 (TaMSRMK3) in the QCd.uia2-7B region were compared between UIP and LCS. TaHMA2 on 7B is proposed for the first time as a candidate gene for grain Cd content in wheat. A KASP marker associated with this gene was developed and it will be further validated in near-isogenic lines via a gene-editing system in future studies.


2008 ◽  
Vol 59 (10) ◽  
pp. 2875-2890 ◽  
Author(s):  
L. Bermúdez ◽  
U. Urias ◽  
D. Milstein ◽  
L. Kamenetzky ◽  
R. Asis ◽  
...  

2021 ◽  
Vol 12 ◽  
Author(s):  
Quanwei Lu ◽  
Xianghui Xiao ◽  
Juwu Gong ◽  
Pengtao Li ◽  
Yan Zhao ◽  
...  

Fiber length is an important determinant of fiber quality, and it is a quantitative multi-genic trait. Identifying genes associated with fiber length is of great importance for efforts to improve fiber quality in the context of cotton breeding. Integrating transcriptomic information and details regarding candidate gene regions can aid in candidate gene identification. In the present study, the CCRI45 line and a chromosome segment substitution line (CSSL) with a significantly higher fiber length (MBI7747) were utilized to establish F2 and F2:3 populations. Using a high-density genetic map published previously, six quantitative trait loci (QTLs) associated with fiber length and two QTLs associated with fiber strength were identified on four chromosomes. Within these QTLs, qFL-A07-1, qFL-A12-2, qFL-A12-5, and qFL-D02-1 were identified in two or three environments and confirmed by a meta-analysis. By integrating transcriptomic data from the two parental lines and through qPCR analyses, four genes associated with these QTLs including Cellulose synthase-like protein D3 (CSLD3, GH_A12G2259 for qFL-A12-2), expansin-A1 (EXPA1, GH_A12G1972 for qFL-A12-5), plasmodesmata callose-binding protein 3 (PDCB3, GH_A12G2014 for qFL-A12-5), and Polygalacturonase (At1g48100, GH_D02G0616 for qFL-D02-1) were identified as promising candidate genes associated with fiber length. Overall, these results offer a robust foundation for further studies regarding the molecular basis for fiber length and for efforts to improve cotton fiber quality.


Crop Science ◽  
2016 ◽  
Vol 56 (3) ◽  
pp. 942-956 ◽  
Author(s):  
Arvind H. Hirani ◽  
Jianfeng Geng ◽  
Jiefu Zhang ◽  
Carla D. Zelmer ◽  
Peter B. E. McVetty ◽  
...  

2005 ◽  
Vol 15 (2) ◽  
pp. 145-156 ◽  
Author(s):  
Nicholas C. Wheeler ◽  
Kathleen D. Jermstad ◽  
Konstantin Krutovsky ◽  
Sally N. Aitken ◽  
Glenn T. Howe ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document