chromosome segment substitution line
Recently Published Documents


TOTAL DOCUMENTS

27
(FIVE YEARS 12)

H-INDEX

7
(FIVE YEARS 2)

2021 ◽  
Vol 12 ◽  
Author(s):  
Quanwei Lu ◽  
Xianghui Xiao ◽  
Juwu Gong ◽  
Pengtao Li ◽  
Yan Zhao ◽  
...  

Fiber length is an important determinant of fiber quality, and it is a quantitative multi-genic trait. Identifying genes associated with fiber length is of great importance for efforts to improve fiber quality in the context of cotton breeding. Integrating transcriptomic information and details regarding candidate gene regions can aid in candidate gene identification. In the present study, the CCRI45 line and a chromosome segment substitution line (CSSL) with a significantly higher fiber length (MBI7747) were utilized to establish F2 and F2:3 populations. Using a high-density genetic map published previously, six quantitative trait loci (QTLs) associated with fiber length and two QTLs associated with fiber strength were identified on four chromosomes. Within these QTLs, qFL-A07-1, qFL-A12-2, qFL-A12-5, and qFL-D02-1 were identified in two or three environments and confirmed by a meta-analysis. By integrating transcriptomic data from the two parental lines and through qPCR analyses, four genes associated with these QTLs including Cellulose synthase-like protein D3 (CSLD3, GH_A12G2259 for qFL-A12-2), expansin-A1 (EXPA1, GH_A12G1972 for qFL-A12-5), plasmodesmata callose-binding protein 3 (PDCB3, GH_A12G2014 for qFL-A12-5), and Polygalacturonase (At1g48100, GH_D02G0616 for qFL-D02-1) were identified as promising candidate genes associated with fiber length. Overall, these results offer a robust foundation for further studies regarding the molecular basis for fiber length and for efforts to improve cotton fiber quality.


Plant Disease ◽  
2021 ◽  
Author(s):  
Zhennan Xu ◽  
Feifei Wang ◽  
Zhiqiang Zhou ◽  
Qingchang Meng ◽  
Yanping Chen ◽  
...  

Maize rough dwarf disease (MRDD), caused by a virus, seriously affects maize quality and yield worldwide. MRDD can be most effectively controlled with disease-resistant hybrids of corn. Here, MRDD-resistant (Qi319) and -susceptible (Ye478) parental inbred maize lines and their 314 recombinant inbred lines (RILs) that were derived from a cross between them were evaluated across three environments. A stable resistance QTL, qMrdd2, was identified and mapped using BLUP values to a 0.55 Mb region between the markers MK807 and MK811 on chromosome 2 (B73 RefGen_v3), which was found to explain 8.6 to 11.0% of the total phenotypic variance in MRDD resistance. We validated the effect of qMrdd2 using a chromosome segment substitution line (CSSL) that was derived from a cross between maize inbred Qi319 as the MRDD resistance donor and Ye478 as the recipient. Disease severity index of the CSSL haplotype II harboring qMrdd2 was significantly lower than that of the susceptible parent Ye478. Subsequently, we fine-mapped qMrdd2 to a 315 kb region flanked by the markers RD81 and RD87 by testing recombinant-derived progeny using selfed backcrossed families. In this study, we identified a novel QTL for MRDD-resistance by combining the RIL and CSSL populations, which can be used to breed for MRDD resistant varieties of maize. Keywords: Maize, Maize rough dwarf disease, QTL, Fine-mapping, Recombinant inbred line, Chromosome segment substitution line.


Rice ◽  
2020 ◽  
Vol 13 (1) ◽  
Author(s):  
Ting Zhang ◽  
Shiming Wang ◽  
Shuangfei Sun ◽  
Yi Zhang ◽  
Juan Li ◽  
...  

Abstract Background Grain size affects not only rice yield but is also an important element in quality of appearance. However, the mechanism for inheritance of grain size is unclear. Results A rice chromosome segment substitution line Z1392, which harbors three substitution segments and produces grains of increased length, was identified. The three chromosome segments were located on chromosomes 1, 5, and 6, and the average length of the substitution segment was 3.17 Mb. Cytological analysis indicates that the predominant cause of increased grain length in Z1392 could be cell expansion in the glumes. Seven quantitative trait loci (QTLs) for grain size related traits were identified using the secondary F2 population produced by Nipponbare/Z1392. The inheritance of grain length in Z1392 was mainly controlled by two major QTLs, qGL-5 and qGL-6. qGL-6 was localized on a 1.26 Mb region on chromosome 6, and OsARF19 may be its candidate gene. Based on QTL mapping, three single-segment substitution lines (S1, S2, and S3) and two double-segment substitution lines (D1 and D2) were selected, and the mapping accuracy for qGL-5 and qGL-6 was further verified using three single-segment substitution lines. Analysis of QTL additive and epistatic effects revealed that the additive effect of alleles qGL-5 and qGL-6 from ‘Xihui 18’ was estimated to increase grain length of Z1392 by 0.22 and 0.15 mm, respectively. In addition, a positive epistatic interaction between qGL-5 and qGL-6 was detected, which indicates that the pyramiding of qGL-5 and qGL-6 for grain length produces a novel genotype with longer grains. Conclusions Inheritance of grain length in the triple-segment substitution line Z1392 is mainly controlled by two major QTLs, qGL-5 and qGL-6. qGL-6 was found to be located in a 1.26 Mb region on chromosome 6, and OsARF19 may be its candidate gene. A positive epistatic interaction between qGL-5 and qGL-6 results in longer grains. The present results can be used to facilitate cloning of the qGL-5 and qGL-6 genes and contribute to improvement of grain yield in rice.


2020 ◽  
Author(s):  
Ting Zhang ◽  
Shiming Wang ◽  
Shuangfei Sun ◽  
Yi Zhang ◽  
Juan Li ◽  
...  

Abstract Background: Grain size affects not only rice yield but is also an important element in quality of appearance. However, the mechanism for inheritance of grain size is unclear. Results: A rice chromosome segment substitution line Z1392, which harbors three substitution segments and produces grains of increased length, was identified. The three chromosome segments were located on chromosomes 1, 5, and 6, and the average length of the substitution segment was 3.17 Mb. Cytological analysis indicates that the predominant cause of increased grain length in Z1392 could be cell expansion in the glumes. Seven quantitative trait loci (QTLs) for grain size related traits were identified using the secondary F2 population produced by Nipponbare/Z1392. The inheritance of grain length in Z1392 was mainly controlled by two major QTLs, qGL-5 and qGL-6. qGL-6 was localized on a 1.26 Mb region on chromosome 6, and OsARF19 may be its candidate gene. Based on QTL mapping, three single-segment substitution lines (S1, S2, and S3) and two double-segment substitution lines (D1 and D2) were selected, and the mapping accuracy for qGL-5 and qGL-6 was further verified using three single-segment substitution lines. Analysis of QTL additive and epistatic effects revealed that the additive effect of alleles qGL-5 and qGL-6 from ‘Xihui 18’ was estimated to increase grain length of Z1392 by 0.22 and 0.15 mm, respectively. In addition, a positive epistatic interaction between qGL-5 and qGL-6 was detected, which indicates that the pyramiding of qGL-5 and qGL-6 for grain length produces a novel genotype with longer grains. Conclusions: Inheritance of grain length in the triple-segment substitution line Z1392 is mainly controlled by two major QTLs, qGL-5 and qGL-6. qGL-6 was found to be located in a 1.26 Mb region on chromosome 6, and OsARF19 may be its candidate gene. A positive epistatic interaction between qGL-5 and qGL-6 results in longer grains. The present results can be used to facilitate cloning of the qGL-5 and qGL-6 genes and contribute to improvement of grain yield in rice.


Sign in / Sign up

Export Citation Format

Share Document