scholarly journals Genotype-by-Diet Interactions Drive Metabolic Phenotype Variation in Drosophila melanogaster

Genetics ◽  
2010 ◽  
Vol 185 (3) ◽  
pp. 1009-1019 ◽  
Author(s):  
Laura K. Reed ◽  
Stephanie Williams ◽  
Mastafa Springston ◽  
Julie Brown ◽  
Kenda Freeman ◽  
...  
2020 ◽  
Vol 8 (12) ◽  
pp. 1972
Author(s):  
Andrei Bombin ◽  
Owen Cunneely ◽  
Kira Eickman ◽  
Sergei Bombin ◽  
Abigail Ruesy ◽  
...  

Symbiotic microbiota can help its host to overcome nutritional challenges, which is consistent with a holobiont theory of evolution. Our project investigated the effects produced by the microbiota community, acquired from the environment and horizontal transfer, on metabolic traits related to obesity. The study applied a novel approach of raising Drosophila melanogaster, from ten wild-derived genetic lines on naturally fermented peaches, preserving genuine microbial conditions. Larvae raised on the natural and standard lab diets were significantly different in every tested phenotype. Frozen peach food provided nutritional conditions similar to the natural ones and preserved key microbial taxa necessary for survival and development. On the peach diet, the presence of parental microbiota increased the weight and development rate. Larvae raised on each tested diet formed microbial communities distinct from each other. The effect that individual microbial taxa produced on the host varied significantly with changing environmental and genetic conditions, occasionally to the degree of opposite correlations.


2020 ◽  
Author(s):  
Andrei Bombin ◽  
Owen Cunneely ◽  
Kira Eickman ◽  
Sergei Bombin ◽  
Abigail Ruesy ◽  
...  

AbstractObesity is an increasing worldwide epidemic and contributes to physical and mental health losses. The development of obesity is caused by multiple factors including genotype, hormonal misregulation, psychological stress, and gut microbiota. Our project investigated the effects produced by microbiota community, acquired from the environment and horizontal transfer, on traits related to obesity. The study applied a novel approach of raising Drosophila melanogaster from ten, wild-derived genetic lines (DGRP) on naturally fermented peaches, thereby preserving genuine microbial conditions. Our results indicated that larvae raised on the natural and standard lab diets were significantly different from each other in every tested phenotype. In addition, sterilized larvae raised on the autoclaved peach diet, therefore exposed to natural nutritional stress but lacking natural microbiota community, were associated with adverse phenotypes such as low survival rate, longer developmental time, smaller weight, and elevated triglyceride and glucose levels. Our findings suggested that frozen peach food provided nutritional conditions similar to the natural ones and preserved key microbial taxa necessary for survival and development of Drosophila larvae. The presence of parental microbiota did not produce a significant effect on any of the tested phenotypes when larvae were raised on the lab diet. Contrarily, on the peach diet, the presence of parental microbiota increased the weight and development rate, even if the original peach microbiota were still present. In addition, we found that larvae raised on the peach diet formed a microbial community distinctive from larvae raised on the lab or peach autoclaved diets. The effect that individual microbial taxa produced on the host varied significantly with changing environmental and genetic conditions, occasionally to the degree of opposite correlations.


2021 ◽  
Author(s):  
Andrei Bombin ◽  
Owen Cunneely ◽  
Sergei Bombin ◽  
Kira Eickman ◽  
Abigail Ruesy ◽  
...  

ABSTRACTObesity is an increasing pandemic and is caused by multiple factors including genotype, psychological stress, and gut microbiota. Our project investigated the effects produced by high fat and high sugar dietary modifications on microbiota and metabolic phenotype of Drosophila melanogaster. Larvae raised on the high fat and high sugar diets exhibited bacterial communities that were compositionally and phylogenetically different from bacterial communities of the larvae raised on normal diets, especially if parental microbiota were removed. Several of the dominant bacteria taxa that are commonly associated with high fat and high sugar diets across model organisms and even human populations showed similar pattern in our results. Corynebacteriaceae and Erysipelotrichaceae were connected with high fat food, while Enterobacteriaceae and Lactobacillaceae were associated with high sugar diets. In addition, we observed that presence of symbiotic microbiota often mitigated the effect that harmful dietary modifications produced on larvae, including elevated triglyceride concentrations and was crucial for Drosophila survival, especially on high sugar peach diets.


2020 ◽  
Author(s):  
Gesa F. Dinges ◽  
Alexander S. Chockley ◽  
Till Bockemühl ◽  
Kei Ito ◽  
Alexander Blanke ◽  
...  

2001 ◽  
Vol 7 (S2) ◽  
pp. 1012-1013
Author(s):  
Uyen Tram ◽  
William Sullivan

Embryonic development is a dynamic event and is best studied in live animals in real time. Much of our knowledge of the early events of embryogenesis, however, comes from immunofluourescent analysis of fixed embryos. While these studies provide an enormous amount of information about the organization of different structures during development, they can give only a static glimpse of a very dynamic event. More recently real-time fluorescent studies of living embryos have become much more routine and have given new insights to how different structures and organelles (chromosomes, centrosomes, cytoskeleton, etc.) are coordinately regulated. This is in large part due to the development of commercially available fluorescent probes, GFP technology, and newly developed sensitive fluorescent microscopes. For example, live confocal fluorescent analysis proved essential in determining the primary defect in mutations that disrupt early nuclear divisions in Drosophila melanogaster. For organisms in which GPF transgenics is not available, fluorescent probes that label DNA, microtubules, and actin are available for microinjection.


2003 ◽  
Vol 39 ◽  
pp. 11-24 ◽  
Author(s):  
Justin V McCarthy

Apoptosis is an evolutionarily conserved process used by multicellular organisms to developmentally regulate cell number or to eliminate cells that are potentially detrimental to the organism. The large diversity of regulators of apoptosis in mammalian cells and their numerous interactions complicate the analysis of their individual functions, particularly in development. The remarkable conservation of apoptotic mechanisms across species has allowed the genetic pathways of apoptosis determined in lower species, such as the nematode Caenorhabditis elegans and the fruitfly Drosophila melanogaster, to act as models for understanding the biology of apoptosis in mammalian cells. Though many components of the apoptotic pathway are conserved between species, the use of additional model organisms has revealed several important differences and supports the use of model organisms in deciphering complex biological processes such as apoptosis.


2014 ◽  
Vol 56 ◽  
pp. 69-83 ◽  
Author(s):  
Ko-Fan Chen ◽  
Damian C. Crowther

The formation of amyloid aggregates is a feature of most, if not all, polypeptide chains. In vivo modelling of this process has been undertaken in the fruitfly Drosophila melanogaster with remarkable success. Models of both neurological and systemic amyloid diseases have been generated and have informed our understanding of disease pathogenesis in two main ways. First, the toxic amyloid species have been at least partially characterized, for example in the case of the Aβ (amyloid β-peptide) associated with Alzheimer's disease. Secondly, the genetic underpinning of model disease-linked phenotypes has been characterized for a number of neurodegenerative disorders. The current challenge is to integrate our understanding of disease-linked processes in the fly with our growing knowledge of human disease, for the benefit of patients.


Sign in / Sign up

Export Citation Format

Share Document