scholarly journals Sit4 and PP2A Dephosphorylate Nitrogen Catabolite Repression-Sensitive Gln3 When TorC1 Is Up- as Well as Downregulated

Genetics ◽  
2019 ◽  
Vol 212 (4) ◽  
pp. 1205-1225 ◽  
Author(s):  
Jennifer J. Tate ◽  
Elizabeth A. Tolley ◽  
Terrance G. Cooper
2015 ◽  
Vol 2015 ◽  
pp. 1-8 ◽  
Author(s):  
Marcos D. Palavecino ◽  
Susana R. Correa-García ◽  
Mariana Bermúdez-Moretti

Yeast can use a wide variety of nitrogen compounds. However, the ability to synthesize enzymes and permeases for catabolism of poor nitrogen sources is limited in the presence of a rich one. This general mechanism of transcriptional control is called nitrogen catabolite repression. Poor nitrogen sources, such as leucine, γ-aminobutyric acid (GABA), and allantoin, enable growth after the synthesis of pathway-specific catabolic enzymes and permeases. This synthesis occurs only under conditions of nitrogen limitation and in the presence of a pathway-specific signal. In this work we studied the temporal order in the induction of AGP1, BAP2, UGA4, and DAL7, genes that are involved in the catabolism and use of leucine, GABA, and allantoin, three poor nitrogen sources. We found that when these amino acids are available, cells will express AGP1 and BAP2 in the first place, then DAL7, and at last UGA4. Dal81, a general positive regulator of genes involved in nitrogen utilization related to the metabolisms of GABA, leucine, and allantoin, plays a central role in this coordinated regulation.


Genetics ◽  
2015 ◽  
Vol 201 (3) ◽  
pp. 989-1016 ◽  
Author(s):  
Rajendra Rai ◽  
Jennifer J. Tate ◽  
Karthik Shanmuganatham ◽  
Martha M. Howe ◽  
David Nelson ◽  
...  

2013 ◽  
Vol 13 (1) ◽  
pp. 31-42 ◽  
Author(s):  
Anna Andersson Rasmussen ◽  
Dineshkumar Kandasamy ◽  
Halfdan Beck ◽  
Seth D. Crosby ◽  
Olof Björnberg ◽  
...  

ABSTRACTPyrimidines are important nucleic acid precursors which are constantly synthesized, degraded, and rebuilt in the cell. Four degradation pathways, two of which are found in eukaryotes, have been described. One of them, theURCpathway, has been initially discovered in our laboratory in the yeastLachancea kluyveri. Here, we present the global changes in gene expression inL. kluyveriin response to different nitrogen sources, including uracil, uridine, dihydrouracil, and ammonia. The expression pattern of the knownURCgenes,URC1-6, helped to identify nine putative novelURCgenes with a similar expression pattern. The microarray analysis provided evidence that both theURCandPYDgenes are under nitrogen catabolite repression inL. kluyveriand are induced by uracil or dihydrouracil, respectively. We determined the function ofURC8, which was found to catalyze the reduction of malonate semialdehyde to 3-hydroxypropionate, the final degradation product of the pathway. The other eight genes studied were all putative permeases. Our analysis of double deletion strains showed that theL. kluyveriFui1p protein transported uridine, just like its homolog inSaccharomyces cerevisiae, but we demonstrated that is was not the only uridine transporter inL. kluyveri. We also showed that theL. kluyverihomologs ofDUR3andFUR4do not have the same function that they have inS. cerevisiae, where they transport urea and uracil, respectively. InL. kluyveri, both of these deletion strains grew normally on uracil and urea.


Sign in / Sign up

Export Citation Format

Share Document