rapamycin treatment
Recently Published Documents


TOTAL DOCUMENTS

191
(FIVE YEARS 30)

H-INDEX

36
(FIVE YEARS 4)

Blood ◽  
2021 ◽  
Vol 138 (Supplement 1) ◽  
pp. 2222-2222
Author(s):  
Yi Huang ◽  
Eda Gozel Kapti ◽  
Toby Thomas ◽  
Yuanyuan Ji ◽  
Dheepthi P. Ramasamy ◽  
...  

Abstract Acute myeloid leukemia (AML) is initiated and sustained by leukemia stem cells (LSCs) which arise from progenitor cells that do not usually self-renew but become aberrantly self-renewing. It is thought that LSCs gain aberrant self-renewal potential by co-opting molecular and cellular programs from hematopoietic stem cells (HSCs) (PMID: 16862118). HSCs have been shown to require tightly regulated protein synthesis rates, where increased or decreased protein synthesis impairs self-renewal (PMID: 24670665), but it is not known if LSCs share this dependence. We have shown that human LSCs reside in the population of AML cells with the highest levels of CD99 (PMID: 28123069). In RNA-sequencing studies, we found that LSCs with high levels of CD99 are depleted for ribosomal protein transcripts. We thus reasoned that similar to HSCs, LSCs may depend on tightly regulated protein synthesis to self-renew. To test if CD99 promotes LSC function by constraining protein synthesis, we transduced c-Kit+ cells from B6-CD99 Gt(pU-21T)44lmeg (CD99 KO) or wild-type (WT) mice to express AML1-ETO9a (AE9a) and transplanted them into WT mice treated with rapamycin or vehicle. There was no difference in leukemogenesis in primary recipients, but CD99 KO-AE9a AMLs exhibited a 72% (p=0.048) increase in protein synthesis compared with WT-AE9a AMLs (Figure 1A), confirming that CD99 negatively regulates protein synthesis in AML. We next performed secondary transplants to assess LSC function, as measured by survival of secondary recipients in the absence of rapamycin treatment (Figure 1B). We furthermore performed these transplants at limiting dilution to quantify LSCs (Figure 1C). CD99 KO-AE9a vehicle treated AMLs demonstrated improved survival and a lower LSC frequency compared with WT-AE9a vehicle treated AMLs, consistent with a self-renewal defect with loss of CD99. Rapamycin treatment completely rescued this defect, leading to decreased survival and increased LSC frequency in CD99 KO-AE9a AMLs compared with vehicle. Conversely, rapamycin treatment depleted LSCs in WT-AE9a AMLs, increasing survival and decreasing LSC frequency compared with vehicle. Thus, similar to HSCs, LSCs are adversely affected by both increases or decreases in protein synthesis. MLL-AF9-induced mouse AMLs initiated in HSCs as compared with granulocyte macrophage progenitors (GMPs) exhibit increased epigenetic imprinting of HSC features resulting in disease features reminiscent of high-risk AML (PMID: 23235717). To test if HSC-derived leukemias exhibit increased dependence on regulated protein synthesis, we transduced HSCs or GMPs from CD99 KO or WT mice to express MLL-AF9 and transplanted them into WT recipients, followed by secondary transplants to assess LSC function. Loss of CD99 led to increased survival indicative of decreased LSC function in HSC-derived but not GMP-derived leukemias (Figure 1D). This suggests that HSC-derived leukemias co-opt from HSCs a more pronounced dependence on tightly regulated protein synthesis. Accordingly, WT HSC-derived leukemias exhibited decreased protein synthesis as compared with their WT GMP-derived counterparts (Figure 1E), as well as increased sensitivity to rapamycin (Figure 1F). To directly study protein synthesis in human LSCs, we transduced primary AML specimens (n=4) to express a destabilized form of GFP (dGFP) from a constitutive promoter followed by xenotransplantation (Figure 1G), allowing us to measure dGFP by flow cytometry as a surrogate for protein synthesis rates in vivo. We validated this assay by measuring protein synthesis using orthogonal O-propargyl-puromycin incorporation assays (Figure 1H). Human AML cells with low levels of dGFP demonstrated increased engraftment in secondary transplants (Figure 1I), demonstrating that human LSCs exhibit low protein synthesis rates. In conclusion, our data demonstrate that LSCs co-opt from HSCs a dependence on tightly regulated protein synthesis. This is the first description of a cellular feature co-opted from HSCs that also represents a therapeutic vulnerability. Furthermore, the types of AML that exhibit the most robust re-activation of HSC programs and increased dependence on regulated protein synthesis are also likely to represent high-risk AMLs most resistant to standard therapies. Our data suggest that such therapy resistant AMLs may be highly sensitive to strategies disrupting protein synthesis to deplete LSCs. Figure 1 Figure 1. Disclosures No relevant conflicts of interest to declare.


2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Tse-Yu Chen ◽  
Chelsea T. Smartt

Abstract Background Mosquito-borne dengue virus (DENV) causes major disease worldwide, impacting 50–100 million people every year, and is spread by the major mosquito vector Aedes aegypti. Understanding mosquito physiology, including antiviral mechanisms, and developing new control strategies have become an important step towards the elimination of DENV disease. In the study reported here, we focused on autophagy, a pathway suggested as having a positive influence on virus replication in humans, as a potential antiviral target in the mosquito. Methods To understand the role played by autophagy in Ae. aegypti, we examined the activation of this pathway in Aag-2 cells, an Ae. aegypti-derived cell line, infected with DENV. Rapamycin and 3-methyladenine, two small molecules that have been shown to affect the function of the autophagy pathway, were used to activate or suppress, respectively, the autophagy pathway. Results At 1-day post-DENV infection in Aag-2 cells, transcript levels of both the microtubule-associated protein light chain 3-phosphatidylethanolamine conjugate (LC3-II) and autophagy-related protein 1 (ATG1) increased. Rapamycin treatment activated the autophagy pathway as early as 1-h post-treatment, and the virus titer had decreased in the Aag-2 cells at 2 days post-infection; in contrast, the 3-methyladenine treatment did not significantly affect the DENV titer. Treatment with these small molecules also impacted the ATG12 transcript levels in DENV-infected cells. Conclusions Our studies revealed that activation of the autophagy pathway through rapamycin treatment altered DENV infection in the mosquito cells, suggesting that this pathway could be a possible antiviral mechanism in the mosquito system. Here we provide fundamental information needed to proceed with future experiments and to improve our understanding of the mosquito’s immune response against DENV. Graphical Abstract


2021 ◽  
Author(s):  
Jennifer C Regan ◽  
Yu-Xuan Lu ◽  
Enric Urena ◽  
Ralf Meilenbrock ◽  
James H Catterson ◽  
...  

Pharmacological attenuation of mTOR by rapamycin and other compounds presents a promising route for delay of ageing-related pathologies, including intestinal cancers. Here, we show that rapamycin treatment in Drosophila extends lifespan in females but not in males. Female-specific, age-related gut pathology and impaired intestinal barrier function are both markedly slowed by rapamycin treatment, mediated by increased autophagy. Upon rapamycin treatment, female intestinal enterocytes increase autophagy, via the H3/H4 histone-Bchs axis, while male enterocytes show high basal levels of autophagy that do not increase further upon rapamycin treatment. Sexual identity of enterocytes alone, determined by the expression of transformerFemale, dictates sexually dimorphic cell size, H3/H4-Bchs expression, basal rates of autophagy, fecundity, intestinal homeostasis and extension of lifespan in response to rapamycin. This study highlights that tissue sex determines regulation of metabolic processes by mTOR and the efficacy of mTOR-targeted, anti-ageing drug treatments.


2021 ◽  
Vol 9 (3) ◽  
pp. 56
Author(s):  
Steven Nguyen ◽  
William A. Banks ◽  
Elizabeth M. Rhea

Rapamycin is an exogenous compound that has been shown to improve cognition in Alzheimer’s disease mouse models and can regulate pathways downstream of the insulin receptor signaling pathway. Insulin is also known to improve cognition in rodent models of Alzheimer’s disease. Central nervous system (CNS) insulin must first cross the blood–brain barrier (BBB), a specialized network of brain endothelial cells. This transport process is regulated by physiological factors, such as insulin itself, triglycerides, cytokines, and starvation. Since rapamycin treatment can alter the metabolic state of rodents, increase the circulating triglycerides, and acts as a starvation mimetic, we hypothesized rapamycin could alter the rate of insulin transport across the BBB, providing a potential mechanism for the beneficial effects of rapamycin on cognition. Using young male and female CD-1 mice, we measured the effects of rapamycin on the basal levels of serum factors, insulin receptor signaling, vascular binding, and BBB pharmacokinetics. We found chronic rapamycin treatment was able to affect basal levels of circulating serum factors and endothelial cell insulin receptor signaling. In addition, while acute rapamycin treatment did affect insulin binding at the BBB, overall transport was unaltered. Chronic rapamycin slowed insulin BBB transport non-significantly (p = 0.055). These results suggest that rapamycin may not directly impact the transport of insulin at the BBB but could be acting to alter insulin signaling within brain endothelial cells, which can affect downstream signaling.


Author(s):  
Ni-Hao Gu ◽  
Guo-Jing Li ◽  
Bing-Xin Yang ◽  
Min You ◽  
Yu Lin ◽  
...  

Adenomyosis (AM) is a disease in which endometrial tissue invades the myometrium and has a 10–60% prevalence in reproductive-aged women. TSC2 regulates autophagy via mTOR1 signalling in colorectal cancer and endometrial carcinoma. Dysregulation of autophagy is implicated in adenomyosis pathogenesis. However, whether TSC2 participates in adenomyosis via autophagy remains obscure. Here, we found that the expression of TSC2 in adenomyosis was significantly decreased than that in normal endometrium during the secretory phase. Moreover, TSC2 and autophagy marker expression was significantly lower in ectopic lesions than in eutopic samples. TSC2 downregulation inhibited autophagy through mTOR1 signalling pathway activation in endometrial cells, leading to excessive proliferation, migration, and EMT; TSC2 overexpression induced the opposite effects. Rapamycin treatment suppressed cell proliferation, migration and EMT in the absence of TSC2. In parallel, an autophagy-specific inhibitor (SAR-405) restored migration and EMT under rapamycin treatment in TSC2-knockdown Ishikawa cells. Finally, SAR-405 treatment promoted EMT and migration of overexpressing cells. Collectively, our results suggest that TSC2 controls endometrial epithelial cell migration and EMT by regulating mTOR1-autophagy axis activation and that hypo-expression of TSC2 in the endometrium might promote adenomyosis.


2021 ◽  
Vol 29 ◽  
pp. S102-S103
Author(s):  
D. Minton ◽  
K. Santangelo ◽  
M. Javors ◽  
A. Konopka

2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Daibang Nie ◽  
Jianying Zhang ◽  
Yiqin Zhou ◽  
Jiuyi Sun ◽  
Wang Wang ◽  
...  

The elderly population is prone to tendinopathy due to aging-related tendon changes such as cellular senescence and a decreased ability to modulate inflammation. Aging can render tendon stem/progenitor cells (TSCs) into premature senescence. We investigated the effects of rapamycin, a specific mTOR inhibitor, on the senescence of TSCs. We first showed that after treatment with bleomycin in vitro, rat patellar TSCs (PTSCs) underwent senescence, characterized by morphological alterations, induction of senescence-associated β-galactosidase (SA-β-gal) activity, and an increase in p53, p21, and p62 protein expression. Senescence of PTSCs was also characterized by the elevated expression of MMP-13 and TNF-α genes, both of which are molecular hallmarks of chronic tendinopathy. We then showed that rapamycin treatment was able to reverse the above senescent phenotypes and increase autophagy in the senescent PTSCs. The activation of autophagy and senescence rescue was, at least partly, due to the translocation of HMGB1 from the nucleus to the cytosol that functions as an autophagy promoter. By reducing TSC senescence, rapamycin may be used as a therapeutic to inhibit tendinopathy development in the aging population by promoting autophagy.


2021 ◽  
Vol 20 (2) ◽  
pp. 359
Author(s):  
Yijian Chen ◽  
Wanqiong Yuan ◽  
Xiaolong Zeng ◽  
Yuanchen Ma ◽  
Qiujian Zheng ◽  
...  

2020 ◽  
Vol 2 (12) ◽  
pp. 1472-1481
Author(s):  
Miguel Martin-Perez ◽  
Anthony S. Grillo ◽  
Takashi K. Ito ◽  
Anthony S. Valente ◽  
Jeehae Han ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document