Combustion Modes of the Ti + C Granular Mixture with Different Content of Gasifying Additive

2021 ◽  
Vol 57 (3) ◽  
pp. 88-96
Author(s):  
B.S. Seplyarskii ◽  
R.A. Kochetkov ◽  
T.G. Lisina ◽  
N.I. Abzalov
2021 ◽  
Vol 57 (3) ◽  
pp. 334-342
Author(s):  
B. S. Seplyarskii ◽  
R. A. Kochetkov ◽  
T. G. Lisina ◽  
N. I. Abzalov

1987 ◽  
Vol 52 (8) ◽  
pp. 2019-2027 ◽  
Author(s):  
Libor Červený ◽  
Nguyen Thi Du ◽  
Ivo Paseka

Palladium catalysts have been used to study the hydrogenation of 1-phenyl-2-butene-1-ol which is accompanied by several side reactions considered to be acid-catalysed. Another model reaction studied was dehydration and subsequent hydrogenation or hydrogenolysis of 1-phenyl-1,3-propanediol to 3-phenyl-1-propanol, accompanied by formation of propylbenzene. The dehydration and propylbenzene formation can be again classified as acid-catalysed reactions. Another one is methanolysis of styrene oxide taking place under conditions of liquid phase hydrogenation due to the acid properties of Pd-H systems. Hydrogenation activity of Pd catalysts was tested by hydrogenation of cyclohexene. Sixteen Pd catalysts on different supports and with different content of active component were used, their activity and selectivity was determined and the effect of variable parameters in the synthesis of these catalysts on the activity and selectivity is discussed.


Author(s):  
Chiara Roberta Girelli ◽  
Francesca Serio ◽  
Rita Accogli ◽  
Federica Angilè ◽  
Antonella De Donno ◽  
...  

Background: Plants of genus Cichorium are known for their therapeutic and nutraceutical properties determined by a wealth of phytochemical substances contained in the whole plant. The aim of this paper was to characterize the metabolic profiles of local Salento chicory (Cichorium intybus L.) varieties (“Bianca”, “Galatina”, “Leccese”, and “Otranto”) in order to describe their metabolites composition together with possible bioactivity and health beneficial properties. Methods: The investigation was performed by 1H-NMR spectroscopy and Multivariate Analysis (MVA), by which the metabolic profiles of the samples were easily obtained and compared. Results: The supervised Partial Least Squares Discriminant Analysis (PLS-DA) analysis showed as “Bianca” and “Galatina” samples grouped together separated by “Leccese” and “Otranto” varieties. A different content of free amino acids and organic acids was observed among the varieties. In particular a high content of cichoric and monocaffeoyl tartaric acid was observed for the “Leccese” variety. The presence of secondary metabolites adds significant interest in the investigation of Cichorium inthybus, as this vegetable may benefit human health when incorporated into the diet. Conclusions: The 1H-NMR (Nuclear Magnetic Resonance Spectroscopy) based characterization of Salento chicory varieties allowed us to determine the potential usefulness and nutraceutical properties of the product, also providing a method to guarantee its authenticity on a molecular scale.


2021 ◽  
pp. 146808742110183
Author(s):  
Jonathan Martin ◽  
André Boehman

Compression-ignition (CI) engines can produce higher thermal efficiency (TE) and thus lower carbon dioxide (CO2) emissions than spark-ignition (SI) engines. Unfortunately, the overall fuel economy of CI engine vehicles is limited by their emissions of nitrogen oxides (NOx) and soot, which must be mitigated with costly, resource- and energy-intensive aftertreatment. NOx and soot could also be mitigated by adding premixed gasoline to complement the conventional, non-premixed direct injection (DI) of diesel fuel in CI engines. Several such “dual-fuel” combustion modes have been introduced in recent years, but these modes are usually studied individually at discrete conditions. This paper introduces a mapping system for dual-fuel CI modes that links together several previously studied modes across a continuous two-dimensional diagram. This system includes the conventional diesel combustion (CDC) and conventional dual-fuel (CDF) modes; the well-explored advanced combustion modes of HCCI, RCCI, PCCI, and PPCI; and a previously discovered but relatively unexplored combustion mode that is herein titled “Piston-split Dual-Fuel Combustion” or PDFC. Tests show that dual-fuel CI engines can simultaneously increase TE and lower NOx and/or soot emissions at high loads through the use of Partial HCCI (PHCCI). At low loads, PHCCI is not possible, but either PDFC or RCCI can be used to further improve NOx and/or soot emissions, albeit at slightly lower TE. These results lead to a “partial dual-fuel” multi-mode strategy of PHCCI at high loads and CDC at low loads, linked together by PDFC. Drive cycle simulations show that this strategy, when tuned to balance NOx and soot reductions, can reduce engine-out CO2 emissions by about 1% while reducing NOx and soot by about 20% each with respect to CDC. This increases emissions of unburnt hydrocarbons (UHC), still in a treatable range (2.0 g/kWh) but five times as high as CDC, requiring changes in aftertreatment strategy.


Author(s):  
Fan LI ◽  
Mingbo SUN ◽  
Jiajian ZHU ◽  
Zun CAI ◽  
Hongbo WANG ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document