LAB-SCALE MODELING OF PORE FLUID FLOW IN SAMPLES OF MANMADE SUBSTANCE FROM TAILINGS PONDS

2019 ◽  
Vol 55 (5) ◽  
pp. 715-721
Author(s):  
D. O. Kucher ◽  
T. V. Korneeva ◽  
S. B. Bortnikova

Geofluids ◽  
2011 ◽  
Vol 11 (1) ◽  
pp. 108-122 ◽  
Author(s):  
X. ZHANG ◽  
C. J. SPIERS ◽  
C. J. PEACH

Author(s):  
Moussa Tembely ◽  
Ali M. AlSumaiti ◽  
Khurshed Rahimov ◽  
Mohamed S. Jouini

Minerals ◽  
2020 ◽  
Vol 10 (8) ◽  
pp. 657
Author(s):  
Chaojie Cheng ◽  
Harald Milsch

Fractures efficiently affect fluid flow in geological formations, and thereby determine mass and energy transport in reservoirs, which are not least exploited for economic resources. In this context, their response to mechanical and thermal changes, as well as fluid–rock interactions, is of paramount importance. In this study, a two-stage flow-through experiment was conducted on a pure quartz sandstone core of low matrix permeability, containing one single macroscopic tensile fracture. In the first short-term stage, the effects of mechanical and hydraulic aperture on pressure and temperature cycles were investigated. The purpose of the subsequent intermittent-flow long-term (140 days) stage was to constrain the evolution of the geometrical and hydraulic fracture properties resulting from pressure solution. Deionized water was used as the pore fluid, and permeability, as well as the effluent Si concentrations, were systematically measured. Overall, hydraulic aperture was shown to be significantly less affected by pressure, temperature and time, in comparison to mechanical aperture. During the long-term part of the experiment at 140 °C, the effluent Si concentrations likely reached a chemical equilibrium state within less than 8 days of stagnant flow, and exceeded the corresponding hydrostatic quartz solubility at this temperature. This implies that the pressure solution was active at the contacting fracture asperities, both at 140 °C and after cooling to 33 °C. The higher temperature yielded a higher dissolution rate and, consequently, a faster attainment of chemical equilibrium within the contact fluid. X-ray µCT observations evidenced a noticeable increase in fracture contact area ratio, which, in combination with theoretical considerations, implies a significant decrease in mechanical aperture. In contrast, the sample permeability, and thus the hydraulic fracture aperture, virtually did not vary. In conclusion, pressure solution-induced fracture aperture changes are affected by the degree of time-dependent variations in pore fluid composition. In contrast to the present case of a quasi-closed system with mostly stagnant flow, in an open system with continuous once-through fluid flow, the activity of the pressure solution may be amplified due to the persistent fluid-chemical nonequilibrium state, thus possibly enhancing aperture and fracture permeability changes.


Sign in / Sign up

Export Citation Format

Share Document