Coherent Structures and Turbulent Transfer in the Initial Region of Jets and Flame in Swirling Flow

Author(s):  
A.S. Lobasov ◽  
L.M. Chikishev ◽  
V.M. Dulin ◽  
D.M. Markovich
2019 ◽  
Vol 174 (1) ◽  
pp. 119-144 ◽  
Author(s):  
Georgios A. Efstathiou ◽  
John Thuburn ◽  
Robert J. Beare

Abstract A new method is introduced to identify coherent structures in the convective boundary layer, based on optimizing the vertical scalar flux in a two-fluid representation of turbulent motions as simulated by a large-eddy simulation. The new approach partitions the joint frequency distribution (JFD) of the vertical velocity and a transported scalar into coherent structures (fluid 2) and their environment (fluid 1) by maximizing that part of the scalar flux resolved by the mean properties in fluid 2 and fluid 1. The proposed method does not rely on any a priori criteria for the partitioning of the flow nor any pre-assumptions about the shape of the JFD. Different flavours of the optimization approach are examined based on maximizing either the total (fluid 1 $$+$$+ fluid 2) or the fluid-2 resolved scalar flux, and on whether all possible partitions or only a subset are considered. These options can result in different derived area fractions for the coherent structures. The properties of coherent structures diagnosed by the optimization method are compared to the conditional sampling of a surface-emitted decaying tracer, in which coherent structures are defined as having tracer perturbation greater than some height-dependent threshold. Results show that the optimization method is able to smoothly define coherent thermal structures in both the horizontal and the vertical. Moreover, optimizing the turbulent transfer by the fluid-2 resolved flux produces very similar coherent structures to the tracer threshold method, especially in terms of their area fraction and updraft velocities. Nonetheless, further analysis of the partitioning of the JFD reveals that, even though the area fraction of coherent structures might be similar, their definition can occupy different quadrants of the JFD, implying the contribution of different physical mechanisms to the turbulent transfer in the boundary layer. Finally, the kinematic and thermodynamic characteristics of the coherent structures are examined based on their definition criteria.


Author(s):  
H. Au ◽  
N.W.M. Ko

This paper describes an experimental investigation of the initial region of a subsonic cold coaxial jet at a mean-velocity ratio λ, outer to inner, of 1.25. Detailed measurements in the initial region have shown that similarity of the pressure intensity profiles exists in the three zones: the initial merging zone, the intermediate zone and the fully merged zone. Spectral measurements of the pressure fluctuations confirm the existence of coherent structures in the outer mixing region. Comparison of the coaxial jet results with those of the single jet has been attempted.


2019 ◽  
Vol 141 (12) ◽  
Author(s):  
Weijie Liu ◽  
Huiru Wang ◽  
Qian Yang ◽  
Ranran Xue ◽  
Bing Ge ◽  
...  

Abstract Swirling flow is often employed in gas turbine combustion chambers for the sake of improving flame stability. Swirling flow induces not only recirculation zones but also large coherent structures, which show close relationship with flow dynamics and combustion instability. The flow dynamics including precessing vortex core (PVC) in simple swirlers is extensively studied, while the flow instability characteristics in a multiswirler combustor are not fully reported. In this paper, large eddy simulation (LES) of nonreacting turbulent swirling flow is conducted in a multiswirler burner, which comprises a pilot stage and a main stage. Flow dynamics in the multiswirler combustor are analyzed based on phase-averaged evolution of instantaneous flowfield. LES results are compared with particle image velocimetry (PIV) data in terms of mean and root mean square (RMS) velocities. Proper orthogonal decomposition (POD) is employed to identify the coherent structures in the multiswirling flow. Results show that LES results are in good agreement with particle image velocimetry (PIV) data. Main stage and pilot stage flow interact with each other generating highly turbulent swirling flow. PVC is successfully captured at the boundary of main recirculation zone (MRZ) in the pilot stage with a dominant frequency of 1915 Hz. The PVC leads to periodic azimuthal flow instability. POD analyses for the velocity fields show dominant high-frequency modes (modes 1 and 2) in the pilot stage. However, the dominant energetic flow is damped rapidly downstream of the pilot stage that it has little effect on the main stage flow.


Author(s):  
Weijie Liu ◽  
Huiru Wang ◽  
Qian Yang ◽  
Ranran Xue ◽  
Bing Ge ◽  
...  

Abstract Swirling flow is often employed in gas turbine combustion chambers for the sake of improving flame stability. Swirling flow induces not only recirculation zones but also large coherent structures which show close relationship with flow dynamics and combustion instability. The flow dynamics including Precessing Vortex Core (PVC) in simple swirlers are extensively studied, while the flow instability characteristics in a multi-swirler combustor are not fully reported. In the present paper, Large Eddy Simulation (LES) of non-reacting turbulent swirling flow is conducted in a multi-swirler burner which comprises a pilot stage and a main stage. Flow dynamics in the multi-swirler combustor are analyzed based on phase-averaged evolution of instantaneous flowfield. Proper Orthogonal Decomposition (POD) is employed to identify the coherent structures in the multi-swirling flow. Results show that the main stage and pilot stage flow interact with each other generating highly turbulent swirling flow. PVC is successfully captured at the boundary of Main recirculation zone (MRZ) in the pilot stage with a dominant frequency of 1915 Hz. The PVC leads to periodic azimuthal flow instability. POD analyses for the velocity fields show dominant high-frequency modes (mode 1 and mode 2) in the pilot stage. However, the dominant energetic flow is damped rapidly downstream of the pilot stage that it has little effect on the main stage flow.


2017 ◽  
Vol 827 ◽  
pp. 572-613 ◽  
Author(s):  
Kuppuraj Rajamanickam ◽  
Saptarshi Basu

This paper discusses the fundamental mechanisms of vortex–droplet interactions leading to flow distortion, droplet dispersion and breakup in a complex swirling gas flow field. In particular, the way in which the location of droplet injection determines the degree of inhomogeneous dispersion and breakup modes has been elucidated in detail using high-fidelity laser diagnostics. The droplets are injected as monodispersed streams at various spatial locations such as the vortex breakdown bubble and the shear layers (inner and outer) exhibited by the swirling flow. Simultaneous time-resolved particle image velocimetry ($3500~\text{frames}~\text{s}^{-1}$) and high-speed shadowgraphy measurements are employed to delineate the two-phase interaction dynamics. These measurements have been used to evaluate the fluctuations in instantaneous circulation strength $\unicode[STIX]{x1D6E4}^{\prime }$ caused by the flow field eddies and the resultant angular dispersion in the droplet trajectories $\unicode[STIX]{x1D703}^{\prime }$. The droplet–flow interactions show two-way coupling at low momentum ratios ($MR$) and strong one-way coupling at high momentum ratios. The gas phase flow field is globally altered at low airflow rates (low $MR$) due to impact of droplets with the vortex core. The flow perturbation is found to be minimal and mainly local at high airflow rates (high $MR$). Spectral coherence analysis is carried out to understand the correlation between eddy circulation strength $\unicode[STIX]{x1D6E4}^{\prime }$ and droplet dispersion $\unicode[STIX]{x1D703}^{\prime }$. The droplet dispersion shows strong coherence with the flow in certain frequency bands. Subsequently, proper orthogonal decomposition (POD) is implemented to elucidate the governing instability mechanism and frequency signatures associated with the turbulent coherent structures. The POD results suggest dominance of the Kelvin–Helmholtz (KH) instability mode (axial and azimuthal shear). The frequency range pertaining to high coherence between dispersion and circulation shows good agreement with KH instability quantified from POD analysis. The droplets injected at the inner shear layer (ISL) and outer shear layer (OSL) show different interaction dynamics. For instance, droplet dispersion at the OSL exhibits secondary frequency (shedding mode) coupling in addition to the KH mode, whereas ISL injection couples only in a single narrow frequency band (i.e. KH mode). Further, high-speed shadow imaging ($7500~\text{frames}~\text{s}^{-1}$) is employed to visualize the breakup dynamics of the droplets. The effect of coherent structures on the droplet breakup modes is shown as a function of the Weber number ($We$) defined based on the circulation strength. The wide fluctuations caused in the instantaneous circulation strength lead to different breakup modes (bag, multimodal, shear thinning, catastrophic) even for fixed airflow rates. These fluctuations also lead to inhomogeneous spatial dispersion of the droplets in the swirling gas flow field. We are able to present the dispersion contours in terms of the Stokes number and a spatial homogeneity parameter. In essence, the dispersion inhomogeneity is found to be a strong function of the injection location, the phase relationship with the eddies and the momentum ratio ($MR$).


2009 ◽  
Vol 630 ◽  
pp. 93-128 ◽  
Author(s):  
S. DUPONT ◽  
Y. BRUNET

Large coherent structures over vegetation canopies are responsible for a substantial part of the turbulent transfer of momentum, heat and mass between the canopy and the atmosphere. As forested landscapes are often fragmented, edge regions may be of importance in turbulent transfer. The development of coherent structures from the leading edge of a forest is investigated here for the first time. For this purpose, the turbulent flow over a clearing–forest pattern is simulated using the Advanced Regional Prediction System (ARPS). In previous studies the code has been modified so as to simulate turbulent flows at very fine scale (0.1h, where h is the mean canopy height) within and above heterogeneous vegetation canopies, using a large-eddy simulation (LES) approach. Validations have also been performed over homogeneous forest canopies and over a simple forest–clearing–forest pattern, against field and wind-tunnel measurements. Here, a schematic picture of the development of coherent eddies downstream from the leading edge of a forest is extracted from the mean vorticity components, the Q-criterion field, the cross-correlation of the wind velocity components and the length and separation length scales of coherent structures, determined by using a wavelet transform. This schematic picture shows strong similarities with the development of coherent structures observed in a mixing layer, with four different regions: (i) close to the edge, Kelvin–Helmholtz instabilities develop when a strong wind gust hits the canopy; (ii) these instabilities roll over to form transverse vortices from around 3h downstream from the edge, characterized by a length scale close to the depth of the internal boundary layer that develops from the canopy edge; (iii) secondary instabilities destabilize these rollers and increase the vertical and streamwise vorticity components from around 6h, and two counter-rotating streamwise vortices appear; (iv) at about 9h the initial rollers have become complex three-dimensional coherent structures, with spatially constant mean length and separation length scales. These four stages of development occur closer to the edge with increasing canopy density. While this average picture of the development of coherent structures is similar to that observed in a mixing layer, the analysis of instantaneous fields shows that coherent structures behind the leading edge appear as resulting from the ‘branching’ of tubes localized in regions of low pressure, where their cores are characterized by high values of enstrophy and Q-criterion.


Sign in / Sign up

Export Citation Format

Share Document