Inhibitory Effect of Cleistanthus Collinus Plant Extracts and their Fractions on Glutathione S-transferase activity

2012 ◽  
Vol 2 (9) ◽  
pp. 10-11
Author(s):  
Vishal L. Bagde ◽  
◽  
Dipali B Borkar ◽  
A. G. Deshmukh A. G. Deshmukh ◽  
M. S. Dudhare M. S. Dudhare
2011 ◽  
Vol 7 (3) ◽  
pp. 349-355 ◽  
Author(s):  
M.S.M. Zabri Tan ◽  
M.R. Ab Halim ◽  
S. Ismail ◽  
F. Mustaffa ◽  
N.I. Mohd Ali ◽  
...  

2008 ◽  
Vol 43 (3) ◽  
pp. 268-278 ◽  
Author(s):  
Fang Tang ◽  
Xiu-Bo Zhang ◽  
Yu-Sheng Liu ◽  
Xi-Wu Gao

The small prominent, Micromelalopha troglodyta (Graeser) (Lepidoptera: Notodontidae), is an important pest of poplar in China. Glutathione S-transferases are known to be responsible for adaptation mechanisms of M. troglodyta. Thus, the tissue distribution and kinetic constants of glutathione S-transferase activity in the small prominent were studied. Significant differences in glutathione S-transferase (GST) activity and distribution percentages of GST activity and kinetic characteristics were observed among 4 tissues (head, midgut, fat body and integument). Furthermore, the inhibition of glutathione S-transferase activity in 4 tissues by 21 inhibitors was conducted. The results showed the inhibition of GST activity of different tissues by 21 inhibitors is different. For GST activity in heads, chlorpyrifos, profenofos, lambda-cyhalothrin, fipronil and quercetin were the best inhibitors tested. Tannic acid was the most potent inhibitor of midgut GST activity. In the fat body, GST activity was inhibited most by tannic acid, chlorpyrifos and profenofos. The inhibitory effect of profenofos and phoxim was highest for GST activity in the integument. Our results showed that glutathione S-transferases in different tissues are qualitatively different in isozyme composition and thus different in sensitivity to inhibitors.


1991 ◽  
Vol 46 (9-10) ◽  
pp. 850-855 ◽  
Author(s):  
John V. Dean ◽  
John W. Gronwald ◽  
Michael P. Anderson

Abstract Fast protein liquid chromatography (anion exchange) was used to separate glutathione S-transferase isozymes in nontreated etiolated maize shoots and those treated with the herbi­cide safener CGA -1542814-(dichloroacetyl)-3,4-dihydro-3-methyl-2 H-1 ,4-benzoxazine. Non­treated shoots contained isozymes active with the following substrates: trans-cinnamic acid (1 isozyme), atrazine (3 isozymes), 1-chloro-2,4-dinitrobenzene (1 isozyme), metolachlor (2 isozymes) and the sulfoxide derivative of S-ethyl dipropylcarbamothioate (2 isozymes). Pre­treatment of shoots with the safener CGA -154281 (1 μM) had no effect on the activity of the isozymes selective for trans-cinnamic acid and atrazine but increased the activity of the constitutively-expressed isozymes that exhibit activity with 1-chloro-2,4-dinitrobenzene, metola­chlor and the sulfoxide derivative of S-ethyl dipropylcarbamothioate. The safener pretreat­ment also caused the appearance of one new isozyme active with 1-chloro-2,4-dinitrobenzene and one new isozyme active with metolachlor. The results illustrate the complexity of gluta­thione S-transferase activity in etiolated maize shoots, and the selective enhancement of gluta­thione S-transferase isozymes by the safener CGA -154281.


Foods ◽  
2021 ◽  
Vol 10 (7) ◽  
pp. 1466
Author(s):  
Hafiz Rehan Nadeem ◽  
Saeed Akhtar ◽  
Tariq Ismail ◽  
Piero Sestili ◽  
Jose Manuel Lorenzo ◽  
...  

Heterocyclic aromatic amines (HAAs) are potent carcinogenic compounds induced by the Maillard reaction in well-done cooked meats. Free amino acids, protein, creatinine, reducing sugars and nucleosides are major precursors involved in the production of polar and non-polar HAAs. The variety and yield of HAAs are linked with various factors such as meat type, heating time and temperature, cooking method and equipment, fresh meat storage time, raw material and additives, precursor’s presence, water activity, and pH level. For the isolation and identification of HAAs, advanced chromatography and spectroscopy techniques have been employed. These potent mutagens are the etiology of several types of human cancers at the ng/g level and are 100- to 2000-fold stronger than that of aflatoxins and benzopyrene, respectively. This review summarizes previous studies on the formation and types of potent mutagenic and/or carcinogenic HAAs in cooked meats. Furthermore, occurrence, risk assessment, and factors affecting HAA formation are discussed in detail. Additionally, sample extraction procedure and quantification techniques to determine these compounds are analyzed and described. Finally, an overview is presented on the promising strategy to mitigate the risk of HAAs by natural compounds and the effect of plant extracts containing antioxidants to reduce or inhibit the formation of these carcinogenic substances in cooked meats.


1989 ◽  
Vol 264 (3) ◽  
pp. 737-744 ◽  
Author(s):  
P Steinberg ◽  
H Schramm ◽  
L Schladt ◽  
L W Robertson ◽  
H Thomas ◽  
...  

The distribution and inducibility of cytosolic glutathione S-transferase (EC 2.5.1.18) and glutathione peroxidase (EC 1.11.1.19) activities in rat liver parenchymal, Kupffer and endothelial cells were studied. In untreated rats glutathione S-transferase activity with 1-chloro-2,4-dinitrobenzene and 4-hydroxynon-2-trans-enal as substrates was 1.7-2.2-fold higher in parenchymal cells than in Kupffer and endothelial cells, whereas total, selenium-dependent and non-selenium-dependent glutathione peroxidase activities were similar in all three cell types. Glutathione S-transferase isoenzymes in parenchymal and non-parenchymal cells isolated from untreated rats were separated by chromatofocusing in an f.p.l.c. system: all glutathione S-transferase isoenzymes observed in the sinusoidal lining cells were also detected in the parenchymal cells, whereas Kupffer and endothelial cells lacked several glutathione S-transferase isoenzymes present in parenchymal cells. At 5 days after administration of Arocolor 1254 glutathione S-transferase activity was only enhanced in parenchymal cells; furthermore, selenium-dependent glutathione peroxidase activity decreased in parenchymal and non-parenchymal cells. At 13 days after a single injection of Aroclor 1254 a strong induction of glutathione S-transferase had taken place in all three cell types, whereas selenium-dependent glutathione peroxidase activity remained unchanged (endothelial cells) or was depressed (parenchymal and Kupffer cells). Hence these results clearly establish that glutathione S-transferase and glutathione peroxidase are differentially regulated in rat liver parenchymal as well as non-parenchymal cells. The presence of glutathione peroxidase and several glutathione S-transferase isoenzymes capable of detoxifying a variety of compounds in Kupffer and endothelial cells might be crucial to protect the liver from damage by potentially hepatotoxic substances.


1997 ◽  
Vol 31 (1) ◽  
pp. 43-47 ◽  
Author(s):  
Galal E. M. D. Ghazaly ◽  
Madeha M. Zakahary ◽  
Mohamed A. A. El-aziz ◽  
Ahmed A. E. M. Mahmoud ◽  
Pablo Carretero ◽  
...  

2015 ◽  
Vol 10 (3) ◽  
pp. 117-124
Author(s):  
Kuldeep Kaushik ◽  
Pawan Kumar Mittal ◽  
Natwar Raj Kalla

Placenta ◽  
1986 ◽  
Vol 7 (2) ◽  
pp. 155-162 ◽  
Author(s):  
C. Di Ilio ◽  
P. Sacchetta ◽  
G. Del Boccio ◽  
E. Casalone ◽  
G. Polidoro

Sign in / Sign up

Export Citation Format

Share Document