scholarly journals Tensile shear strength of steel plate-reinforced larch timber as affected by further reinforcement of the wood with carbon fiber reinforced polymer (CFRP)

BioResources ◽  
2021 ◽  
Vol 16 (3) ◽  
pp. 5106-5117
Author(s):  
In-Hwan Lee ◽  
Yo-Jin Song ◽  
Soon-Il Hong

To improve the connecting strength of larch timbers, tensile shear test specimens were fabricated, and their connecting shear strength performance was examined. The control specimens consisted of larch timber reinforced with steel plate. These were compared with similar specimens in which the wood had been reinforced with carbon fiber reinforced polymer (CFRP). The reinforced specimens were fabricated in three types depending on the position of the CFRP reinforcement in the wooden part. All specimens were fabricated in two end distance types, depending on the bolt insertion position. The end distances examined were 60 mm (5D) and 84 mm (7D). The maximum connecting strength and the yield shear strength of each type were not different according to the CFRP reinforcement position. The reinforced specimens had an average connecting strength and yield shear strength that was 24% to 29% higher than the control specimens. The CFRP-reinforced specimens with an end distance of 5D had an average connecting strength and an average yield shear strength that that was 70% and 26% higher, respectively, than non-reinforced 7D specimens. The yield shear strength was predicted by measuring the bearing strengths of the larch timber samples and CFRP-reinforced timber samples. The predicted yield shear strength matched the measured yield shear strength.

2020 ◽  
Vol 23 (11) ◽  
pp. 2247-2260 ◽  
Author(s):  
Yu-Yang Pang ◽  
Gang Wu ◽  
Zhi-Long Su ◽  
Xiao-Yuan He

The failure mode is crucial to the interfacial bond performance between carbon-fiber-reinforced polymer plates and steel substrates. Existing studies mainly focused on the cohesive failures in the adhesive; however, research on other types of failure modes is still limited. In this article, a series of single-shear bonded joints are prepared to investigate the bond behaviors of the carbon-fiber-reinforced polymer–steel interfaces based on carbon-fiber-reinforced polymer delamination failures and hybrid failures. Three kinds of adhesives—which have different tensile strengths and elastic moduli—and two kinds of carbon-fiber-reinforced polymer plates—which have different interlaminar shear strengths—are used to evaluate the influencing factors of carbon-fiber-reinforced polymer–steel interfaces. The three-dimensional digital image correlation technique is applied to measure the strain and the displacement on the surface of each specimen. The obtained test results include the strain distribution, the ultimate load, the failure mode, the load–slip curves, and the bond–slip relationships. For the carbon-fiber-reinforced polymer delamination mode, the results show that the load at the debonding stage is closely related to the interlaminar shear strength of the carbon-fiber-reinforced polymer plate, and the higher the interlaminar shear strength is, the greater the load. However, for the hybrid mode, the load of the whole test process is independent of the interlaminar shear strength of the carbon-fiber-reinforced polymer plate.


2020 ◽  
Vol 23 (12) ◽  
pp. 2503-2513
Author(s):  
Xi-Zhi Wu ◽  
Wei-Kang Yang ◽  
Xian-Jun Li

When carbon fiber reinforced polymer is applied to reinforce a steel plate, the end of it tends to debond which could cause a failure. In this article, the finite element model of carbon fiber reinforced polymer–reinforced steel plate was established based on the cohesive zone model and validated by the linear elasticity model and experiments at bonding stage and stripping stage, through which the stripping mechanism of the adhesive layer was studied. It had been proved by the test results of carbon fiber reinforced polymer–reinforced steel plate that the shear stress was the main factor of stripping damage, the whole stripping process consisted of elastic deformation, softening and stripping, and that the stripping began from the end to the middle of carbon fiber reinforced polymer until complete failure. Therefore, the cohesive zone model was suitable for the analysis of carbon fiber reinforced polymer–reinforced steel plate.


2019 ◽  
Vol 7 (1) ◽  
pp. 30-34
Author(s):  
A. Ajwad ◽  
U. Ilyas ◽  
N. Khadim ◽  
Abdullah ◽  
M.U. Rashid ◽  
...  

Carbon fiber reinforced polymer (CFRP) strips are widely used all over the globe as a repair and strengthening material for concrete elements. This paper looks at comparison of numerous methods to rehabilitate concrete beams with the use of CFRP sheet strips. This research work consists of 4 under-reinforced, properly cured RCC beams under two point loading test. One beam was loaded till failure, which was considered the control beam for comparison. Other 3 beams were load till the appearance of initial crack, which normally occurred at third-quarters of failure load and then repaired with different ratios and design of CFRP sheet strips. Afterwards, the repaired beams were loaded again till failure and the results were compared with control beam. Deflections and ultimate load were noted for all concrete beams. It was found out the use of CFRP sheet strips did increase the maximum load bearing capacity of cracked beams, although their behavior was more brittle as compared with control beam.


Sign in / Sign up

Export Citation Format

Share Document