On the Paleontology of Animal Cognition: Using the Brain Dimensions of Modern Birds to Characterize Maniraptor Cognition

Author(s):  
Verner Bingman
Keyword(s):  
2010 ◽  
Vol 365 (1542) ◽  
pp. 859-867 ◽  
Author(s):  
Vladimir V. Pravosudov ◽  
Tom V. Smulders

Many animals regularly hoard food for future use, which appears to be an important adaptation to a seasonally and/or unpredictably changing environment. This food-hoarding paradigm is an excellent example of a natural system that has broadly influenced both theoretical and empirical work in the field of biology. The food-hoarding paradigm has played a major role in the conceptual framework of numerous fields from ecology (e.g. plant–animal interactions) and evolution (e.g. the coevolution of caching, spatial memory and the hippocampus) to psychology (e.g. memory and cognition) and neurobiology (e.g. neurogenesis and the neurobiology of learning and memory). Many food-hoarding animals retrieve caches by using spatial memory. This memory-based behavioural system has the inherent advantage of being tractable for study in both the field and laboratory and has been shaped by natural selection, which produces variation with strong fitness consequences in a variety of taxa. Thus, food hoarding is an excellent model for a highly integrative approach to understanding numerous questions across a variety of disciplines. Recently, there has been a surge of interest in the complexity of animal cognition such as future planning and episodic-like-memory as well as in the relationship between memory, the environment and the brain. In addition, new breakthroughs in neurobiology have enhanced our ability to address the mechanisms underlying these behaviours. Consequently, the field is necessarily becoming more integrative by assessing behavioural questions in the context of natural ecological systems and by addressing mechanisms through neurobiology and psychology, but, importantly, within an evolutionary and ecological framework. In this issue, we aim to bring together a series of papers providing a modern synthesis of ecology, psychology, physiology and neurobiology and identifying new directions and developments in the use of food-hoarding animals as a model system.


2020 ◽  
Vol 60 (4) ◽  
pp. 991-1006 ◽  
Author(s):  
Yuxiang Liu ◽  
Genevieve Konopka

Abstract A comprehensive understanding of animal cognition requires the integration of studies on behavior, electrophysiology, neuroanatomy, development, and genomics. Although studies of comparative cognition are receiving increasing attention from organismal biologists, most current studies focus on the comparison of behaviors and anatomical structures to understand their adaptative values. However, to understand the most potentially complex cognitive program of the human brain a greater synthesis of a multitude of disciplines is needed. In this review, we start with extensive neuroanatomic comparisons between humans and other primates. One likely specialization of the human brain is the expansion of neocortex, especially in regions for high-order cognition (e.g., prefrontal cortex). We then discuss how such an expansion can be linked to heterochrony of the brain developmental program, resulting in a greater number of neurons and enhanced computational capacity. Furthermore, alteration of gene expression in the human brain has been associated with positive selection in DNA sequences of gene regulatory regions. These results not only imply that genes associated with brain development are a major factor in the evolution of cognition, but also that high-quality whole-genome sequencing and gene manipulation techniques are needed for an integrative and functional understanding of comparative cognition in non-model organisms.


2012 ◽  
Vol 367 (1603) ◽  
pp. 2704-2714 ◽  
Author(s):  
Murray Shanahan

This paper addresses the question of how the brain of an animal achieves cognitive integration—that is to say how it manages to bring its fullest resources to bear on an ongoing situation. To fully exploit its cognitive resources, whether inherited or acquired through experience, it must be possible for unanticipated coalitions of brain processes to form. This facilitates the novel recombination of the elements of an existing behavioural repertoire, and thereby enables innovation. But in a system comprising massively many anatomically distributed assemblies of neurons, it is far from clear how such open-ended coalition formation is possible. The present paper draws on contemporary findings in brain connectivity and neurodynamics, as well as the literature of artificial intelligence, to outline a possible answer in terms of the brain's most richly connected and topologically central structures, its so-called connective core.


Author(s):  
Jan Willem de Gee ◽  
Camile M.C. Correa ◽  
Matthew Weaver ◽  
Tobias H. Donner ◽  
Simon van Gaal

AbstractCentral to human and animal cognition is the ability to learn from feedback in order to optimize future rewards. Such a learning signal might be encoded and broadcasted by the brain’s arousal systems, including the noradrenergic locus coeruleus. Pupil responses and the P3 component of event-related potentials reflect rapid changes in the arousal level of the brain. Here we ask whether and how these variables may reflect “subjective surprise”: the mismatch between one’s expectation about being correct and the outcome of a decision, when expectations fluctuate due to internal factors (e.g., engagement). We show that during an elementary decision-task in the face of uncertainty both physiological markers of phasic arousal reflect subjective surprise. We further show that pupil responses and P3 are unrelated to each other, and that subjective prediction error computations depend on feedback awareness. These results further advance our understanding of the role of central arousal systems in decision-making under uncertainty.


2019 ◽  
Vol 42 ◽  
Author(s):  
Nazim Keven

Abstract Hoerl & McCormack argue that animals cannot represent past situations and subsume animals’ memory-like representations within a model of the world. I suggest calling these memory-like representations as what they are without beating around the bush. I refer to them as event memories and explain how they are different from episodic memory and how they can guide action in animal cognition.


Sign in / Sign up

Export Citation Format

Share Document