Let's call a memory a memory, but what kind?

2019 ◽  
Vol 42 ◽  
Author(s):  
Nazim Keven

Abstract Hoerl & McCormack argue that animals cannot represent past situations and subsume animals’ memory-like representations within a model of the world. I suggest calling these memory-like representations as what they are without beating around the bush. I refer to them as event memories and explain how they are different from episodic memory and how they can guide action in animal cognition.

2019 ◽  
Vol 116 (31) ◽  
pp. 15362-15367 ◽  
Author(s):  
Henry J. Charlesworth ◽  
Matthew S. Turner

Collective motion is found in various animal systems, active suspensions, and robotic or virtual agents. This is often understood by using high-level models that directly encode selected empirical features, such as coalignment and cohesion. Can these features be shown to emerge from an underlying, low-level principle? We find that they emerge naturally under future state maximization (FSM). Here, agents perceive a visual representation of the world around them, such as might be recorded on a simple retina, and then move to maximize the number of different visual environments that they expect to be able to access in the future. Such a control principle may confer evolutionary fitness in an uncertain world by enabling agents to deal with a wide variety of future scenarios. The collective dynamics that spontaneously emerge under FSM resemble animal systems in several qualitative aspects, including cohesion, coalignment, and collision suppression, none of which are explicitly encoded in the model. A multilayered neural network trained on simulated trajectories is shown to represent a heuristic mimicking FSM. Similar levels of reasoning would seem to be accessible under animal cognition, demonstrating a possible route to the emergence of collective motion in social animals directly from the control principle underlying FSM. Such models may also be good candidates for encoding into possible future realizations of artificial “intelligent” matter, able to sense light, process information, and move.


Author(s):  
Usha Goswami

‘Learning and remembering, reading and number’ considers children’s developing knowledge of their own cognition (meta-cognition) as they start education. How is memory developed? Children develop various kinds of memory, and all are important for learning in school. Psychologists divide memory into three main categories: semantic memory (generic, factual knowledge about the world), episodic memory (the ability to retrieve autobiographical events), and implicit or procedural memory (habits and skills). How do children deal with learning to read and write? How early do children think in terms of numbers? Babies have an innate sense about number and psychologists have long been fascinated with this.


2009 ◽  
Vol 364 (1521) ◽  
pp. 1317-1324 ◽  
Author(s):  
Thomas Suddendorf ◽  
Donna Rose Addis ◽  
Michael C. Corballis

Episodic memory, enabling conscious recollection of past episodes, can be distinguished from semantic memory, which stores enduring facts about the world. Episodic memory shares a core neural network with the simulation of future episodes, enabling mental time travel into both the past and the future. The notion that there might be something distinctly human about mental time travel has provoked ingenious attempts to demonstrate episodic memory or future simulation in non-human animals, but we argue that they have not yet established a capacity comparable to the human faculty. The evolution of the capacity to simulate possible future events, based on episodic memory, enhanced fitness by enabling action in preparation of different possible scenarios that increased present or future survival and reproduction chances. Human language may have evolved in the first instance for the sharing of past and planned future events, and, indeed, fictional ones, further enhancing fitness in social settings.


2001 ◽  
Vol 356 (1413) ◽  
pp. 1453-1465 ◽  
Author(s):  
Richard G. M. Morris

The question of whether any non–human species displays episodic memory is controversial. Associative accounts of animal learning recognize that behaviour can change in response to single events but this does not imply that animals need or are later able to recall representations of unique events at a different time and place. The lack of language is also relevant, being the usual medium for communicating about the world, but whether it is critical for the capacity to represent and recall events is a separate matter. One reason for suspecting that certain animals possess an episodic–like memory system is that a variety of learning and memory tasks have been developed that, even though they do not meet the strict criteria required for episodic memory, have an ‘episodic–like’ character. These include certain one–trial learning tasks, scene–specific discrimination learning, multiple reversal learning, delayed matching and non–matching tasks and, most recently, tasks demanding recollection of ‘what, where and when’ an event happened. Another reason is that the neuronal architecture of brain areas thought to be involved in episodic memory (including the hippocampal formation) are substantially similar in mammals and, arguably, all vertebrates. Third, our developing understanding of activity–dependent synaptic plasticity (which is a candidate neuronal mechanism for encoding memory traces) suggests that its expression reflects certain physiological characteristics that are ideal components of a neuronal episodic memory system. These include the apparently digital character of synaptic change at individual terminals and the variable persistence of potentiation accounted for by the synaptic tag hypothesis. A further value of studying episodic–like memory in animals is the opportunity it affords to model certain kinds of neurodegenerative disease that, in humans, affect episodic memory. An example is recent work on a transgenic mouse that over–expresses a mutation of human amyloid precursor protein (APP) that occurs in familial Alzheimer's disease, under the control of platelet derived (PD) growth factor promoter (the PDAPP mouse). A striking age– and amyloid plaque–related deficit is seen using a task in which the mice have to keep changing their memory representation of the world rather than learn a single fact.


2015 ◽  
Vol 61 (2) ◽  
pp. 328-340 ◽  
Author(s):  
Danielle Sulikowski ◽  
Darren Burke

Abstract Mechanisms of animal learning and memory were traditionally studied without reference to niche-specific functional considerations. More recently, ecological demands have informed such investigations, most notably with respect to foraging in birds. In parallel, behavioural ecologists, primarily concerned with functional optimization, have begun to consider the role of mechanistic factors, including cognition, to explain apparent deviations from optimal predictions. In the present paper we discuss the application of laboratory-based constructs and paradigms of cognition to the real-world challenges faced by avian foragers. We argue that such applications have been handicapped by what we term the ‘paradigmatic assumption’ – the assumption that a given laboratory paradigm maps well enough onto a congruent cognitive mechanism (or cognitive ability) to justify conflation of the two. We present evidence against the paradigmatic assumption and suggest that to achieve a profitable integration between function and mechanism, with respect to animal cognition, a new conceptualization of cognitive mechanisms functional cognition – is required. This new conceptualization should define cognitive mechanisms based on the informational properties of the animal’s environment and the adaptive challenges faced. Cognitive mechanisms must be examined in settings that mimic the important aspects of the natural environment, using customized tasks designed to probe defined aspects of the mechanisms’ operation. We suggest that this approach will facilitate investigations of the functional and evolutionary relevance of cognitive mechanisms, as well as the patterns of divergence, convergence and specialization of cognitive mechanisms within and between species.


2018 ◽  
Vol 41 ◽  
Author(s):  
Ana Gantman ◽  
Robin Gomila ◽  
Joel E. Martinez ◽  
J. Nathan Matias ◽  
Elizabeth Levy Paluck ◽  
...  

AbstractA pragmatist philosophy of psychological science offers to the direct replication debate concrete recommendations and novel benefits that are not discussed in Zwaan et al. This philosophy guides our work as field experimentalists interested in behavioral measurement. Furthermore, all psychologists can relate to its ultimate aim set out by William James: to study mental processes that provide explanations for why people behave as they do in the world.


2020 ◽  
Vol 43 ◽  
Author(s):  
Michael Lifshitz ◽  
T. M. Luhrmann

Abstract Culture shapes our basic sensory experience of the world. This is particularly striking in the study of religion and psychosis, where we and others have shown that cultural context determines both the structure and content of hallucination-like events. The cultural shaping of hallucinations may provide a rich case-study for linking cultural learning with emerging prediction-based models of perception.


2019 ◽  
Vol 42 ◽  
Author(s):  
Penny Van Bergen ◽  
John Sutton

Abstract Sociocultural developmental psychology can drive new directions in gadgetry science. We use autobiographical memory, a compound capacity incorporating episodic memory, as a case study. Autobiographical memory emerges late in development, supported by interactions with parents. Intervention research highlights the causal influence of these interactions, whereas cross-cultural research demonstrates culturally determined diversity. Different patterns of inheritance are discussed.


1994 ◽  
Vol 144 ◽  
pp. 139-141 ◽  
Author(s):  
J. Rybák ◽  
V. Rušin ◽  
M. Rybanský

AbstractFe XIV 530.3 nm coronal emission line observations have been used for the estimation of the green solar corona rotation. A homogeneous data set, created from measurements of the world-wide coronagraphic network, has been examined with a help of correlation analysis to reveal the averaged synodic rotation period as a function of latitude and time over the epoch from 1947 to 1991.The values of the synodic rotation period obtained for this epoch for the whole range of latitudes and a latitude band ±30° are 27.52±0.12 days and 26.95±0.21 days, resp. A differential rotation of green solar corona, with local period maxima around ±60° and minimum of the rotation period at the equator, was confirmed. No clear cyclic variation of the rotation has been found for examinated epoch but some monotonic trends for some time intervals are presented.A detailed investigation of the original data and their correlation functions has shown that an existence of sufficiently reliable tracers is not evident for the whole set of examinated data. This should be taken into account in future more precise estimations of the green corona rotation period.


Popular Music ◽  
2003 ◽  
Vol 22 (2) ◽  
pp. 241-245
Author(s):  
Inez H. Templeton
Keyword(s):  
Hip Hop ◽  

Sign in / Sign up

Export Citation Format

Share Document