scholarly journals On Stirling’s formula

2021 ◽  
Vol 47 ◽  
Author(s):  
Juozas J. Mačys

Approaches to the proof of Stirling’s formula are compared. Elementary proof of very exact variant of formula (with relative error 1/(1260n5)) is given.

2019 ◽  
Vol 62 (4) ◽  
pp. 975-984
Author(s):  
Michael Albert ◽  
Vincent Vatter

AbstractBevan established that the growth rate of a monotone grid class of permutations is equal to the square of the spectral radius of a related bipartite graph. We give an elementary and self-contained proof of a generalization of this result using only Stirling's formula, the method of Lagrange multipliers, and the singular value decomposition of matrices. Our proof relies on showing that the maximum over the space of n × n matrices with non-negative entries summing to one of a certain function of those entries, parametrized by the entries of another matrix Γ of non-negative real numbers, is equal to the square of the largest singular value of Γ and that the maximizing point can be expressed as a Hadamard product of Γ with the tensor product of singular vectors for its greatest singular value.


1986 ◽  
Vol 93 (2) ◽  
pp. 123 ◽  
Author(s):  
P. Diaconis ◽  
D. Freedman

1995 ◽  
Vol 68 (1) ◽  
pp. 55 ◽  
Author(s):  
C. L. Frenzen

1986 ◽  
Vol 93 (2) ◽  
pp. 123-125 ◽  
Author(s):  
P. Diaconis ◽  
D. Freedman

1991 ◽  
Vol 11 (3) ◽  
pp. 356-360 ◽  
Author(s):  
Jia'an Yan
Keyword(s):  

2019 ◽  
pp. 9-13
Author(s):  
V.Ya. Mendeleyev ◽  
V.A. Petrov ◽  
A.V. Yashin ◽  
A.I. Vangonen ◽  
O.K. Taganov

Determining the surface temperature of materials with unknown emissivity is studied. A method for determining the surface temperature using a standard sample of average spectral normal emissivity in the wavelength range of 1,65–1,80 μm and an industrially produced Metis M322 pyrometer operating in the same wavelength range. The surface temperature of studied samples of the composite material and platinum was determined experimentally from the temperature of a standard sample located on the studied surfaces. The relative error in determining the surface temperature of the studied materials, introduced by the proposed method, was calculated taking into account the temperatures of the platinum and the composite material, determined from the temperature of the standard sample located on the studied surfaces, and from the temperature of the studied surfaces in the absence of the standard sample. The relative errors thus obtained did not exceed 1,7 % for the composite material and 0,5% for the platinum at surface temperatures of about 973 K. It was also found that: the inaccuracy of a priori data on the emissivity of the standard sample in the range (–0,01; 0,01) relative to the average emissivity increases the relative error in determining the temperature of the composite material by 0,68 %, and the installation of a standard sample on the studied materials leads to temperature changes on the periphery of the surface not exceeding 0,47 % for composite material and 0,05 % for platinum.


2020 ◽  
Vol 10 (4) ◽  
pp. 471-477
Author(s):  
Merin Loukrakpam ◽  
Ch. Lison Singh ◽  
Madhuchhanda Choudhury

Background:: In recent years, there has been a high demand for executing digital signal processing and machine learning applications on energy-constrained devices. Squaring is a vital arithmetic operation used in such applications. Hence, improving the energy efficiency of squaring is crucial. Objective:: In this paper, a novel approximation method based on piecewise linear segmentation of the square function is proposed. Methods: Two-segment, four-segment and eight-segment accurate and energy-efficient 32-bit approximate designs for squaring were implemented using this method. The proposed 2-segment approximate squaring hardware showed 12.5% maximum relative error and delivered up to 55.6% energy saving when compared with state-of-the-art approximate multipliers used for squaring. Results: The proposed 4-segment hardware achieved a maximum relative error of 3.13% with up to 46.5% energy saving. Conclusion:: The proposed 8-segment design emerged as the most accurate squaring hardware with a maximum relative error of 0.78%. The comparison also revealed that the 8-segment design is the most efficient design in terms of error-area-delay-power product.


1926 ◽  
Vol 2 (3) ◽  
pp. 97-99
Author(s):  
Matsusaburô Fujiwara
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document