normal emissivity
Recently Published Documents


TOTAL DOCUMENTS

27
(FIVE YEARS 8)

H-INDEX

6
(FIVE YEARS 0)

Author(s):  
Nenad D. Milošević

AbstractThis work presents an application of the subsecond calorimetry technique at very high temperatures, which uses both contact and radiance temperature measurements. This technique is normally applied for thermophysical characterization of high temperature solid phase materials in the temperature range from ambient up to about 2600 K, which is the limit of the standard tungsten-rhenium thermocouple use. Simultaneously with contact temperature measurements, noncontact or radiance temperature detection may be performed in the approximate range from 1000 to 2600 K in order to acquire information on spectral normal emissivity of specimen under test. In this study, however, the specimen is heated above 2600 K and, then, the temperature is measured only by the noncontact mean. In the extended temperature range, the obtained values of the spectral normal emissivity are extrapolated for each experimental run, which makes possible a conversion from radiance to absolute specimen temperature. In order to test this application, a pure polycrystalline specimen of tungsten in the form of rod, 3 mm in diameter and 200 mm in length, has been used. The specimen has been heated in vacuum environment of about 10–4 mbar by short pulses of high DC current with a gradual increase of the total heating time from about 0.5–2.5 s. During the specimen heating and the beginning of the cooling period, four sets of experimental data have been recorded and reduced by using the corresponding data reduction procedure. Obtained results of specific heat and specific electrical resistivity from ambient to 3700 K, total hemispherical emissivity from 1000 to 3700 K and spectral normal emissivity from 1000 to 2600 K (extrapolated to 3700 K) are presented, discussed and compared with related literature data.


2021 ◽  
Vol 10 (1) ◽  
pp. 135-152
Author(s):  
Jacques Hameury ◽  
Guillaume Failleau ◽  
Mariacarla Arduini ◽  
Jochen Manara ◽  
Elena Kononogova ◽  
...  

Abstract. The TIR100-2 emissometer (manufactured by Inglas GmbH & Co.KG) is an emissivity measurement device used by several producers of thermal insulation products for buildings and by some organizations certifying performance of insulation products. A comparison of emissivity measurements on low-emissivity foils involving different measurement techniques, including the TIR100-2 emissometer, gave widely dispersed results; the discrepancies were not explained. The metrological performance of the TIR100-2 emissometer and the uncertainties for measurement on reflective foils was not known, which could be detrimental to users. In order to quantify the performance of TIR100-2 devices for measurement of total near-normal emissivity of low-emissivity foils, the Laboratoire National de Métrologie et d'Essais (LNE) analyzed in detail the measuring principle and listed the associated assumptions and uncertainty sources. A TIR100-2 emissometer actually measures the reflectance and, for opaque materials, the emissivity is calculated from the measured reflectance. The parameters analyzed experimentally are the temperature stability and uniformity of the thermal radiation source, the emissivity of the radiation source, the response function linearity and the spectral sensitivity of the radiometric detection system measuring the reflected radiation, the size of the measurement area, and the measurement repeatability and reproducibility. A detailed uncertainty budget was established. The uncertainty sources taken into account are the uncertainties of the emissivities of the two calibrated standards used for calibration, the stability and uniformity of the radiation source temperature, the non-linearity and the spectral sensitivity of the radiometric detection system, the specific measurement condition related to the radiation source temperature, the uncertainties related to the temperatures of the standards and the sample, the noises on results, and the non-homogeneity in emissivity of the tested material. The combined measurement uncertainty was calculated for different types of reflective foils; the expanded uncertainty is around 0.03 for total near-normal emissivity measurements on smooth low-emissivity foils. A measurement campaign on five types of low-emissivity foils, involving four TIR100-2 emissometers, and a comparison to a primary reference setup at the Physikalisch-Technische Bundesanstalt (PTB) confirmed the uncertainties assessed.


2019 ◽  
pp. 9-13
Author(s):  
V.Ya. Mendeleyev ◽  
V.A. Petrov ◽  
A.V. Yashin ◽  
A.I. Vangonen ◽  
O.K. Taganov

Determining the surface temperature of materials with unknown emissivity is studied. A method for determining the surface temperature using a standard sample of average spectral normal emissivity in the wavelength range of 1,65–1,80 μm and an industrially produced Metis M322 pyrometer operating in the same wavelength range. The surface temperature of studied samples of the composite material and platinum was determined experimentally from the temperature of a standard sample located on the studied surfaces. The relative error in determining the surface temperature of the studied materials, introduced by the proposed method, was calculated taking into account the temperatures of the platinum and the composite material, determined from the temperature of the standard sample located on the studied surfaces, and from the temperature of the studied surfaces in the absence of the standard sample. The relative errors thus obtained did not exceed 1,7 % for the composite material and 0,5% for the platinum at surface temperatures of about 973 K. It was also found that: the inaccuracy of a priori data on the emissivity of the standard sample in the range (–0,01; 0,01) relative to the average emissivity increases the relative error in determining the temperature of the composite material by 0,68 %, and the installation of a standard sample on the studied materials leads to temperature changes on the periphery of the surface not exceeding 0,47 % for composite material and 0,05 % for platinum.


2018 ◽  
Vol 123 (14) ◽  
pp. 145107 ◽  
Author(s):  
Yihan Xu ◽  
Longfei Li ◽  
Kun Yu ◽  
Yufang Liu

2016 ◽  
Vol 24 (1) ◽  
pp. 59-64 ◽  
Author(s):  
袁林光 YUAN Lin-guang ◽  
薛战理 XUE Zhan-li ◽  
李宏光 LI Hong-guang ◽  
李 涛 LI Tao ◽  
杨鸿儒 YANG Hong-ru

Sign in / Sign up

Export Citation Format

Share Document