scholarly journals Similarity Solutions for Hydromagnetic Free Convective Heat and Mass Transfer Flow along a Semi-Infinite Permeable Inclined Flat Plate with Heat Generation and Thermophoresis

2007 ◽  
Vol 12 (4) ◽  
pp. 433-445 ◽  
Author(s):  
M. S. Alam ◽  
M. M. Rahman ◽  
M. A. Sattar

The problem of steady, two-dimensional, laminar, hydromagnetic flow with heat and mass transfer over a semi-infinite, permeable inclined flat plate in the presence of thermophoresis and heat generation is studied numerically. A similarity transformation is used to reduce the governing non-linear partial differential equations into ordinary ones. The obtained locally similar equations are then solved numerically by applying Nachtsheim-Swigert shooting iteration technique with sixth-order Runge-Kutta integration scheme. Comparisons with previously published work are performed and the results are found to be in very good agreement. Numerical results for the dimensionless velocity, temperature and concentration profiles as well as for the skin-friction coefficient, wall heat transfer and particle deposition rate are obtained and reported graphically for various values of the parameters entering into the problem.

2016 ◽  
Vol 2016 ◽  
pp. 1-10 ◽  
Author(s):  
Khilap Singh ◽  
Manoj Kumar

The effects of chemical reaction on heat and mass transfer flow of a micropolar fluid in a permeable channel with heat generation and thermal radiation is studied. The Rosseland approximations are used to describe the radiative heat flux in the energy equation. The model contains nonlinear coupled partial differential equations which have been transformed into ordinary differential equation by using the similarity variables. The relevant nonlinear equations have been solved by Runge-Kutta-Fehlberg fourth fifth-order method with shooting technique. The physical significance of interesting parameters on the flow and heat transfer characteristics as well as the local skin friction coefficient, wall couple stress, and the heat transfer rate are thoroughly examined.


2006 ◽  
Vol 11 (4) ◽  
pp. 331-343 ◽  
Author(s):  
M. S. Alam ◽  
M. M. Rahman ◽  
M. A. Samad

The problem of combined free-forced convection and mass transfer flow over a vertical porous flat plate, in presence of heat generation and thermaldiffusion, is studied numerically. The non-linear partial differential equations and their boundary conditions, describing the problem under consideration, are transformed into a system of ordinary differential equations by using usual similarity transformations. This system is solved numerically by applying Nachtsheim-Swigert shooting iteration technique together with Runge-Kutta sixth order integration scheme. The effects of suction parameter, heat generation parameter and Soret number are examined on the flow field of a hydrogen-air mixture as a non-chemical reacting fluid pair. The analysis of the obtained results showed that the flow field is significantly influenced by these parameters.


2016 ◽  
Vol 13 (1) ◽  
pp. 39-50 ◽  
Author(s):  
Patakota Sudarsana Reddy ◽  
Ali J. Chamkha

The effect of thermophoresis on  heat and mass transfer flow of a micropolar fluid in the presence of Soret and Dufour effects past a vertical porous plate have been investigated . The transformed conservation equations are solved numerically using an optimized, extensively validated, variational finite element analysis. The influence of important non-dimensional parameter, Suction parameter ( ), Soret parameter (Sr), Dufour parameter (Du) and thermophoretic parameter (?) on velocity, angular velocity (micro-rotation), temperature and concentration fields as well as shear stress, Nusselt number and Sherwood number are examined in detail and the results are shown in graphically and in tabular form to know the physical importance of the problem. It is found  that the imposition of wall fluid suction (V0>0) in this present problem of flow has the effect of depreciating the  velocity, micro-rotation, temperature and concentration boundary layer thicknesses at every finite value of ?. 


2006 ◽  
Vol 11 (3) ◽  
pp. 217-226 ◽  
Author(s):  
M. S. Alam ◽  
M. M. Rahman ◽  
M. A. Samad

The Dufour and Soret effects on unsteady MHD free convection and mass transfer flow past an infinite vertical porous plate embedded in a porous medium have been studied numerically. The non-linear partial differential equations, governing the problem under consideration, have been transformed by a similarity transformation into a system of ordinary differential equations, which is solved numerically by applying Nachtsheim-Swigert shooting iteration technique together with sixth order Runge-Kutta integration scheme. The effects of various parameters entering into the problem have been examined on the flow field for a hydrogen-air mixture as a non-chemical reacting fluid pair. Finally, the numerical values of local Nusselt number and local Sherwood number are also presented in tabular form.


Sign in / Sign up

Export Citation Format

Share Document