scholarly journals On construction of the control that provides the desired trajectory of the movement of the single-link manipulator with elastic joint

Author(s):  
A.S. Khoroshun ◽  

The law of rotation of the electric motor, which ensures a global asymptotic direction of the trajectory of the model of a single-link manipulator with an elastic joint to a given program trajectory is obtained The elasticity of the joint is modeled by a torsion spring, the elastic force of which is considered to be nonlinearly dependent on the displacement. This fact makes it impossible to apply the usual approach and greatly complicates the task of control construction. The fact that some parameters of the model can be uncertain and, in some way, depend on some numerical parameter, the area of change of which is unknown in advance, also adds complexity. However, the use of DSC (Dynamic Surface Control) technique allows us to get the desired control. The development of the DSC technique, which consists in a specific choice of parameters and constants of filters, is proposed. It avoids the growth of the order of the auxiliary system, as well as a significant complication of the form of both the auxiliary system of differential equations and the control law, the so-called “explosion of terms”. It allows us to obtain explicitly the corresponding auxiliary function and to prove that the proposed control law solves the control problem. The robustness of such control is also proved, and the region of robustness in the system parameters space is defined. The obtained results are illustrated by the example of a mechanical model.

Author(s):  
Mansour Peimani ◽  
Mohammad Javad Yazdanpanah ◽  
Naser Khaji

This paper develops an adaptive dynamic surface algorithm for designing the control law for uncertain hysteretic structural systems with seismic disturbances that can be converted to a semi strict feedback form. Hysteretic behavior is usually described by Bouc–Wen model for hysteretic structural systems like base isolation systems. Adaptive sliding mode and adaptive backstepping algorithms are also studied and simulated for comparison purposes. The presented simulation results indicate the effectiveness of the proposed control law in reducing displacement, velocity and acceleration responses of the structural system with acceptable control force. Moreover, using dynamic surface control (DSC), the study analyzes the stability of the controlled system based on the Lyapunov theory.


IEEE Access ◽  
2019 ◽  
Vol 7 ◽  
pp. 96672-96685 ◽  
Author(s):  
Yang Zhou ◽  
Wenhan Dong ◽  
Shuangyu Dong ◽  
Yong Chen ◽  
Renwei Zuo ◽  
...  

Author(s):  
Yannick Morel ◽  
Alexander Leonessa

This paper presents a novel adaptive control algorithm solving the trajectory tracking problem for quadrotor aerial vehicles. A model reference approach is used, such that the vehicle tracks the trajectory of a reference system, which itself tracks a specified desired trajectory. The control law is derived using a backstepping procedure. A technique derived from dynamic surface control is used to simplify the expression of the obtained control algorithm, with no significant loss in terms of performance. Proof of stability is obtained using Lyapunov theory. Results from numerical simulations illustrate the performance of the obtained controller.


2014 ◽  
Vol 2014 ◽  
pp. 1-10 ◽  
Author(s):  
Yong-Hua Liu ◽  
Ying Feng ◽  
Xinkai Chen

The output tracking problem for a class of uncertain strict-feedback nonlinear systems with unknown Duhem hysteresis input is investigated. In order to handle the undesirable effects caused by unknown hysteresis, the properties in respect to Duhem model are used to decompose it as a nonlinear smooth term and a nonlinear bounded “disturbance-like” term, which makes it possible to deal with the unknown hysteresis without constructing inverse in the controller design. By combining robust control and dynamic surface control technique, an adaptive controller is proposed in this paper to avoid “the explosion complexity” in the standard backstepping design procedure. The negative effects caused by the unknown hysteresis can be mitigated effectively, and the semiglobal uniform ultimate boundedness of all the signals in the closed-loop system is obtained. The effectiveness of the proposed scheme is validated through a simulation example.


Author(s):  
Xiangyu Wang ◽  
Ling Han ◽  
Jiyu Liu

In this paper, the attitude and height tracking control problem is studied for unmanned helicopters with disturbances. To solve the problem, a composite control scheme is proposed based on the combination of dynamic surface control and disturbance observer-based control techniques. The control design includes two parts. In the first part, some nonlinear disturbance observers are designed to accurately estimate the helicopter’s disturbances in different channels. In the second part, based on the disturbance estimates and dynamic surface control technique, a composite dynamic surface tracking controller is designed. Under the proposed composite controller, the attitude and height tracking errors are uniformly ultimately bounded and they can be regulated to be very small by selecting proper controller parameters. For one thing, the proposed control scheme avoids “explosion of terms”, which generally exists in conventional backstepping control and provides a simpler control design. For another thing, without sacrificing the nominal control performances, the anti-disturbance ability of the closed-loop helicopter system is enhanced by using disturbance observers and feedforward compensations. Numerical simulations demonstrate the effectiveness and advantages of the proposed composite tracking controller.


Sign in / Sign up

Export Citation Format

Share Document