Degradation of three dimensional poly(l-lactic acid) scaffolds modified by gelatin

2019 ◽  
Vol 26 (3) ◽  
2021 ◽  
pp. 002199832098856
Author(s):  
Marcela Piassi Bernardo ◽  
Bruna Cristina Rodrigues da Silva ◽  
Luiz Henrique Capparelli Mattoso

Injured bone tissues can be healed with scaffolds, which could be manufactured using the fused deposition modeling (FDM) strategy. Poly(lactic acid) (PLA) is one of the most biocompatible polymers suitable for FDM, while hydroxyapatite (HA) could improve the bioactivity of scaffold due to its chemical composition. Therefore, the combination of PLA/HA can create composite filaments adequate for FDM and with high osteoconductive and osteointegration potentials. In this work, we proposed a different approache to improve the potential bioactivity of 3D printed scaffolds for bone tissue engineering by increasing the HA loading (20-30%) in the PLA composite filaments. Two routes were investigated regarding the use of solvents in the filament production. To assess the suitability of the FDM-3D printing process, and the influence of the HA content on the polymer matrix, thermogravimetric analysis (TGA), differential scanning calorimetry (DSC) and scanning electron microscopy (SEM) were performed. The HA phase content of the composite filaments agreed with the initial composite proportions. The wettability of the 3D printed scaffolds was also increased. It was shown a greener route for obtaining composite filaments that generate scaffolds with properties similar to those obtained by the solvent casting, with high HA content and great potential to be used as a bone graft.


2021 ◽  
pp. 088391152199640
Author(s):  
Renata Aquino de Carvalho ◽  
Valmir Vieira Rocha Júnior ◽  
Antonio José Felix Carvalho ◽  
Heloisa Sobreiro Selistre de Araújo ◽  
Mônica Rosas Costa Iemma ◽  
...  

Bone regenerative medicine (BRM) aims to overcome the limitations of conventional treatments for critical bone defects by developing therapeutic strategies, based on temporary bioactive substitutes, capable of stimulating, sustaining, and guiding tissue regeneration. The aim of this study was to validate the “proof of concept” of a cellularized bioactive scaffold and establish its potential for use in BRM. For this purpose, three-dimensional scaffolds of poly-(lactic acid) (PLA), produced by the additive manufacturing technique, were incorporated into a human platelet-rich plasma (PRP-h) fibrin matrix containing human infrapatellar fat pad mesenchymal stem cells (hIFPMSC). The scaffolds (PLA/finbrin-bioactive) were kept under ideal culture conditions in a medium free from fetal bovine serum and analyzed at 5 and 10 days by Scanning Electron Microscopy (SEM), Fourrier Transform Infrared (FTIR), Circular Dichroism and fluorescence microscopy. The results demonstrated the feasibility of obtaining a rigid, cytocompatible, and cellularized three-dimensional structure. In addition, PRP platelets and leukocytes were able to provide a bioactive environment capable of maintaining the viability of hIFPMSC into scaffolds. The results validate the concept of a customizable, bioactive, cellularized, and non-immunogenic strategy for application in BRM.


Materials ◽  
2018 ◽  
Vol 11 (10) ◽  
pp. 1893 ◽  
Author(s):  
Přemysl Menčík ◽  
Radek Přikryl ◽  
Ivana Stehnová ◽  
Veronika Melčová ◽  
Soňa Kontárová ◽  
...  

This paper explores the influence of selected commercial plasticizers structure, which are based on esters of citric acid, on mechanical and thermal properties of Poly(3-hydroxybutyrate)/Poly(lactic acid)/Plasticizer biodegradable blends. These plasticizers were first tested with respect to their miscibility with Poly(3-hydroxybutyrate)/Poly(lactic acid) (PHB/PLA) blends using a kneading machine. PHB/PLA/plasticizer blends in the weight ratio (wt %) of 60/25/15 were then prepared by single screw and corotating meshing twin screw extruders in the form of filament for further three-dimensional (3D) printing. Mechanical, thermal properties, and shape stability (warping effect) of 3D printed products can be improved just by the addition of appropriate plasticizer to polymeric blend. The goal was to create new types of eco-friendly PHB/PLA/plasticizers blends and to highly improve the poor mechanical properties of neat PHB/PLA blends (with majority of PHB) by adding appropriate plasticizer. Mechanical properties of plasticized blends were then determined by the tensile test of 3D printed test samples (dogbones), as well as filaments. Measured elongation at break rapidly enhanced from 21% for neat non-plasticized PHB/PLA blends (reference) to 328% for best plasticized blends in the form of filament, and from 5% (reference) to 187% for plasticized blends in the form of printed dogbones. The plasticizing effect on blends was confirmed by Modulated Differential Scanning Calorimetry. The study of morphology was performed by the Scanning Electron Microscopy. Significant problem of plasticized blends used to be also plasticizer migration, therefore the diffusion of plasticizers from the blends after 15 days of exposition to 110 °C in the drying oven was investigated as their measured weight loss. Almost all of the used plasticizers showed meaningful positive softening effects, but the diffusion of plasticizers at 110 °C exposition was quite extensive. The determination of the degree of disintegration of selected plasticized blend when exposed to a laboratory-scale composting environment was executed to roughly check the “biodegradability”.


2013 ◽  
Vol 52 ◽  
pp. 106-113 ◽  
Author(s):  
Ning Wu ◽  
Yunxing Liang ◽  
Kegang Zhang ◽  
Wenzheng Xu ◽  
Li Chen

2007 ◽  
Vol 13 (6) ◽  
pp. 1205-1217 ◽  
Author(s):  
Jose F. Alvarez-Barreto ◽  
Mark C. Shreve ◽  
Paul L. Deangelis ◽  
Vassilios I. Sikavitsas

2021 ◽  
Vol 9 ◽  
Author(s):  
Yadi Han ◽  
Xiaofeng Shen ◽  
Sihao Chen ◽  
Xiuhui Wang ◽  
Juan Du ◽  
...  

The challenge of effectively regenerating bone tissue through tissue engineering technology is that most tissue engineering scaffolds cannot imitate the three-dimensional structure and function of the natural extracellular matrix. Herein, we have prepared the poly(L-lactic acid)–based dual bioactive component reinforced nanofiber mats which were named as poly(L-lactic acid)/bovine serum albumin/nanohydroxyapatite (PLLA/BSA/nHAp) with dual bioactive components by combining homogeneous blending and electrospinning technology. The results showed that these nanofiber mats had sufficient mechanical properties and a porous structure suitable for cell growth and migration. Furthermore, the results of cell experiments in vitro showed that PLLA/BSA/nHAp composite nanofiber mat could preferably stimulate the proliferation of mouse osteoblastic cells (MC3T3 cells) compared with pure PLLA nanofiber mats. Based on these results, the scaffolds developed in this study are considered to have a great potential to be adhibited as bone repair materials.


Sign in / Sign up

Export Citation Format

Share Document