scholarly journals A Nanofiber Mat With Dual Bioactive Components and a Biomimetic Matrix Structure for Improving Osteogenesis Effect

2021 ◽  
Vol 9 ◽  
Author(s):  
Yadi Han ◽  
Xiaofeng Shen ◽  
Sihao Chen ◽  
Xiuhui Wang ◽  
Juan Du ◽  
...  

The challenge of effectively regenerating bone tissue through tissue engineering technology is that most tissue engineering scaffolds cannot imitate the three-dimensional structure and function of the natural extracellular matrix. Herein, we have prepared the poly(L-lactic acid)–based dual bioactive component reinforced nanofiber mats which were named as poly(L-lactic acid)/bovine serum albumin/nanohydroxyapatite (PLLA/BSA/nHAp) with dual bioactive components by combining homogeneous blending and electrospinning technology. The results showed that these nanofiber mats had sufficient mechanical properties and a porous structure suitable for cell growth and migration. Furthermore, the results of cell experiments in vitro showed that PLLA/BSA/nHAp composite nanofiber mat could preferably stimulate the proliferation of mouse osteoblastic cells (MC3T3 cells) compared with pure PLLA nanofiber mats. Based on these results, the scaffolds developed in this study are considered to have a great potential to be adhibited as bone repair materials.

2007 ◽  
Vol 336-338 ◽  
pp. 1646-1649 ◽  
Author(s):  
Qing Feng Zan ◽  
Chen Wang ◽  
Li Min Dong ◽  
Rui Liu ◽  
Jie Mo Tian

Since a small globular particle was first used as support for three-dimensional (3D) growth of anchorage-dependent cells in suspended cultures, a variety of microspheres as tissue engineering scaffolds have been developed. In this paper, β-TCP and chitosan were selected as the components of microspheres due to their biodegradability and osteogenic properties. The biodegradable β-TCP/chitosan composite microspheres were prepared by a solid-in-water-in-oil (s/w/o) emulsion cross-linking method in this paper. The size distribution, surface morphology, and microstructure of the microspheres were evaluated. Scanning electron microscopy revealed that the size of the microspheres with good spherical morphology was distributed in the range of 50~200μm. In vitro immersion experiments were carried out to evaluate the degradability of the microspheres, and the results demonstrated that the chitosan/β-TCP composite microspheres were potential materials as tissue engineering scaffolds for bone repair.


2016 ◽  
Vol 19 (2) ◽  
pp. 93-100
Author(s):  
Lalita El Milla

Scaffolds is three dimensional structure that serves as a framework for bone growth. Natural materials are often used in synthesis of bone tissue engineering scaffolds with respect to compliance with the content of the human body. Among the materials used to make scafffold was hydroxyapatite, alginate and chitosan. Hydroxyapatite powder obtained by mixing phosphoric acid and calcium hydroxide, alginate powders extracted from brown algae and chitosan powder acetylated from crab. The purpose of this study was to examine the functional groups of hydroxyapatite, alginate and chitosan. The method used in this study was laboratory experimental using Fourier Transform Infrared (FTIR) spectroscopy for hydroxyapatite, alginate and chitosan powders. The results indicated the presence of functional groups PO43-, O-H and CO32- in hydroxyapatite. In alginate there were O-H, C=O, COOH and C-O-C functional groups, whereas in chitosan there were O-H, N-H, C=O, C-N, and C-O-C. It was concluded that the third material containing functional groups as found in humans that correspond to the scaffolds material in bone tissue engineering.


2018 ◽  
pp. 461-475 ◽  
Author(s):  
Ozan Karaman

The limitation of orthopedic fractures and large bone defects treatments has brought the focus on fabricating bone grafts that could enhance ostegenesis and vascularization in-vitro. Developing biomimetic materials such as mineralized nanofibers that can provide three-dimensional templates of the natural bone extracellular-matrix is one of the most promising alternative for bone regeneration. Understanding the interactions between the structure of the scaffolds and cells and therefore the control cellular pathways are critical for developing functional bone grafts. In order to enhance bone regeneration, the engineered scaffold needs to mimic the characteristics of composite bone ECM. This chapter reviews the fabrication of and fabrication techniques for fabricating biomimetic bone tissue engineering scaffolds. In addition, the chapter covers design criteria for developing the scaffolds and examples of enhanced osteogenic differentiation outcomes by fabricating biomimetic scaffolds.


2017 ◽  
Vol 757 ◽  
pp. 46-51 ◽  
Author(s):  
Patcharakamon Nooeaid ◽  
Piyachat Chuysinuan ◽  
Supanna Techasakul ◽  
Kriengsak Lirdprapamongkol ◽  
Jisnuson Svasti

Three-dimensional (3D) porous alginate/soy protein isolated (Alg/SPI) tissue engineering scaffolds were achieved by freeze-drying. The physico-chemical attributes of the scaffolds including morphology, chemical structure, mechanical properties and in vitro cytotoxicity were investigated for different SPI blends. Results indicated that increasing SPI content to 40 wt% in the blends resulted in the partial existence of closed pores and reduced pore size. The mechanical values of the scaffolds under compression also reduced with increasing SPI in the blends. The addition of SPI did not significantly enhance the cell viability of the scaffolds investigated for in vitro culture with human fibroblasts, which remained in the high (90 – 100%) range. Results demonstrated that Alg/SPI scaffolds have potential for use as tissue engineering scaffolds.


2014 ◽  
Vol 2014 ◽  
pp. 1-8 ◽  
Author(s):  
Tao Sun ◽  
Tareef Hayat Khan ◽  
Naznin Sultana

Composite scaffolds based on biodegradable natural polymer and osteoconductive hydroxyapatite (HA) nanoparticles can be promising for a variety of tissue engineering (TE) applications. This study addressed the fabrication of three-dimensional (3D) porous composite scaffolds composed of HA and chitosan fabricated via thermally induced phase separation and freeze-drying technique. The scaffolds produced were subsequently characterized in terms of microstructure, porosity, and mechanical property.In vitrodegradation andin vitrobiological evaluation were also investigated. The scaffolds were highly porous and had interconnected pore structures. The pore sizes ranged from several microns to a few hundred microns. The incorporated HA nanoparticles were well mixed and physically coexisted with chitosan in composite scaffold structures. The addition of 10% (w/w) HA nanoparticles to chitosan enhanced the compressive mechanical properties of composite scaffold compared to pure chitosan scaffold.In vitrodegradation results in phosphate buffered saline (PBS) showed slower uptake properties of composite scaffolds. Moreover, the scaffolds showed positive response to mouse fibroblast L929 cells attachment. Overall, the findings suggest that HA/chitosan composite scaffolds could be suitable for TE applications.


2021 ◽  
Author(s):  
Chengyong Li ◽  
Tingting Yan ◽  
Zhenkai Lou ◽  
Zhimin Jiang ◽  
Zhi Shi ◽  
...  

Abstract Background Orthopedics has made great progress with the development of medical treatment; however, large bone defects are still great challenges for orthopedic surgeons. A good bone substitute that can be obtained through bone tissue engineering may be an effective treatment method. Artificial hydroxyapatite is the main inorganic component of bones, but its applications are limited due to its fragility and lack of bone-active elements. Therefore, it is necessary to reduce its fragility and improve its biological activity. Methods In this study, we developed micro-hydroxyapatite whiskers (mHAws), which were doped with the essential trace active elements Mg2+ and Sr2+ through a low-temperature sintering technique, used silica complexes to improve the mechanical properties, and then manufactured the bionic porous scaffolds by extrusion molding and freeze-drying. Results Four types of scaffolds were obtained: mHAw-SiO2, Mg-doped mHAw-SiO2, Sr-doped mHAw-SiO2 and Mg-Sr-codoped mHAw-SiO2. These composite porous scaffolds have been suggested to have a sufficiently porous morphology with appropriate mechanical strength, are noncytotoxic, are able to support cell proliferation and spreading, and, more importantly, can promote the osteogenic differentiation of rBMSCs. Conclusion Therefore, these doped scaffolds not only have physical and chemical properties suitable for bone tissue engineering, but also have higher osteogenic bioactivity, and can be possibly serve as potential bone repair material.


Author(s):  
Ozan Karaman

The limitation of orthopedic fractures and large bone defects treatments has brought the focus on fabricating bone grafts that could enhance ostegenesis and vascularization in-vitro. Developing biomimetic materials such as mineralized nanofibers that can provide three-dimensional templates of the natural bone extracellular-matrix is one of the most promising alternative for bone regeneration. Understanding the interactions between the structure of the scaffolds and cells and therefore the control cellular pathways are critical for developing functional bone grafts. In order to enhance bone regeneration, the engineered scaffold needs to mimic the characteristics of composite bone ECM. This chapter reviews the fabrication of and fabrication techniques for fabricating biomimetic bone tissue engineering scaffolds. In addition, the chapter covers design criteria for developing the scaffolds and examples of enhanced osteogenic differentiation outcomes by fabricating biomimetic scaffolds.


2013 ◽  
Vol 2013 ◽  
pp. 1-7 ◽  
Author(s):  
Xiufang Li ◽  
Ceng Zhang ◽  
Lingshuang Wang ◽  
Caili Ma ◽  
Weichao Yang ◽  
...  

The degradation rate of tissue engineering scaffolds should match the regeneration rate of new tissues. Controlling the degradation behavior of silk fibroin is an important subject for silk-based tissue engineering scaffolds. In this study,Antheraea pernyisilk fibroin was successfully modified with succinic anhydride and then characterized by zeta potential, ninhydrin method, and FTIR.In vitro, three-dimensional scaffolds prepared with modified silk fibroin were incubated in collagenase IA solution for 18 days to evaluate the impact of acylation on the degradation behavior. The results demonstrated that the degradation rate of modified silk fibroin scaffolds was more rapid than unmodified ones. The content of theβ-sheet structure in silk fibroin obviously decreased after acylation, resulting in a high degradation rate. Above all, the degradation behavior of silk fibroin scaffolds could be regulated by acylation to match the requirements of various tissues regeneration.


2019 ◽  
Vol 2019 ◽  
pp. 1-12 ◽  
Author(s):  
Francesco Baino ◽  
Jacopo Barberi ◽  
Elisa Fiume ◽  
Gissur Orlygsson ◽  
Jonathan Massera ◽  
...  

Bioactive silicate glass scaffolds were fabricated by a robocasting process in which all the movements of the printing head were programmed by compiling a script (text file). A printable ink made of glass powder and Pluronic F-127, acting as a binder, was extruded to obtain macroporous scaffolds with a grid-like three-dimensional structure. The scaffold architecture was investigated by scanning electron microscopy and microtomographic analysis, which allowed quantifying the microstructural parameters (pore size 150–180 μm and strut diameter 300 μm). In vitro tests in simulated body fluid (SBF) confirmed the apatite-forming ability (i.e., bioactivity) of the scaffolds. The compressive strength (around 10 MPa for as-produced scaffolds) progressively decreased during immersion in SBF (3.3 MPa after 4 weeks) but remains acceptable for bone repair applications. Taken together, these results (adequate porosity and mechanical strength as well as bioactivity) support the potential suitability of the prepared scaffolds for bone substitution.


Sign in / Sign up

Export Citation Format

Share Document