Extended quasi-correlated orbitals with long-range effects: Application to organic single-molecule electronics

2020 ◽  
Vol 27 (1) ◽  
Nanoscale ◽  
2014 ◽  
Vol 6 (12) ◽  
pp. 6953-6958 ◽  
Author(s):  
Y. J. Dappe ◽  
C. González ◽  
J. C. Cuevas

We present anab initiostudy of the use of carbon-based tips as electrodes in single-molecule junctions. We show that carbon tips can be combined with other carbon nanostructures to form all-carbon molecular junctions with molecules like benzene or C60. Results show that the use of carbon tips can lead to conductive molecular junctions and open new perspectives in all-carbon molecular electronics.


2017 ◽  
Vol 46 (25) ◽  
pp. 8259-8268 ◽  
Author(s):  
Wan-Ying Zhang ◽  
Yong-Mei Tian ◽  
Hong-Feng Li ◽  
Peng Chen ◽  
Yi-Quan Zhang ◽  
...  

A series of linear trinuclear complexes Ln2M(OQ)8 [Ln(iii) = Dy and Er, M(ii) = Ca and Mg] were structurally and magnetically investigated.


eLife ◽  
2015 ◽  
Vol 4 ◽  
Author(s):  
Jason C Bell ◽  
Bian Liu ◽  
Stephen C Kowalczykowski

Escherichia coli single-stranded DNA (ssDNA) binding protein (SSB) is the defining bacterial member of ssDNA binding proteins essential for DNA maintenance. SSB binds ssDNA with a variable footprint of ∼30–70 nucleotides, reflecting partial or full wrapping of ssDNA around a tetramer of SSB. We directly imaged single molecules of SSB-coated ssDNA using total internal reflection fluorescence (TIRF) microscopy and observed intramolecular condensation of nucleoprotein complexes exceeding expectations based on simple wrapping transitions. We further examined this unexpected property by single-molecule force spectroscopy using magnetic tweezers. In conditions favoring complete wrapping, SSB engages in long-range reversible intramolecular interactions resulting in condensation of the SSB-ssDNA complex. RecO and RecOR, which interact with SSB, further condensed the complex. Our data support the idea that RecOR--and possibly other SSB-interacting proteins—function(s) in part to alter long-range, macroscopic interactions between or throughout nucleoprotein complexes by microscopically altering wrapping and bridging distant sites.


2021 ◽  
Author(s):  
Zhe Weng ◽  
Fengying Ruan ◽  
Weitian Chen ◽  
Zhe Xie ◽  
Yeming Xie ◽  
...  

The epigenetic modifications of histones are essential marks related to the development and disease pathogenesis, including human cancers. Mapping histone modification has emerged as the widely used tool for studying epigenetic regulation. However, existing approaches limited by fragmentation and short-read sequencing cannot provide information about the long-range chromatin states and represent the average chromatin status in samples. We leveraged the advantage of long read sequencing to develop a method "BIND&MODIFY" for profiling the histone modification of individual DNA fiber. Our approach is based on the recombinant fused protein A-EcoGII, which tethers the methyltransferase EcoGII to the protein binding sites and locally labels the neighboring DNA regions through artificial methylations. We demonstrate that the aggregated BIND&MODIFY signal matches the bulk-level ChIP-seq and CUT&TAG, observe the single-molecule heterogenous histone modification status, and quantify the correlation between distal elements. This method could be an essential tool in the future third-generation sequencing ages.


Author(s):  
Takuji Ogawa ◽  
Murni Handayani ◽  
Tomoko Inose ◽  
Takashi Tamaki ◽  
Minoru Fukumori ◽  
...  

2020 ◽  
Vol 17 (3) ◽  
pp. 319-327 ◽  
Author(s):  
Zohar Shipony ◽  
Georgi K. Marinov ◽  
Matthew P. Swaffer ◽  
Nicholas A. Sinnott-Armstrong ◽  
Jan M. Skotheim ◽  
...  

Author(s):  
Yevgenya Kraytsberg ◽  
Xinhong Guo ◽  
Saisai Tao ◽  
Alexandra Kuznetsov ◽  
Catherine MacLean ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document