scholarly journals Attenuation of acoustic-gravity waves based on modified Navier-Stokes and heat transfer equations

2020 ◽  
Vol 36 (5) ◽  
pp. 15-30
Author(s):  
A. K. Fedorenko ◽  
◽  
E. I. Kryuchkov ◽  
O. K. Cheremnykh ◽  
1979 ◽  
Vol 44 (6) ◽  
pp. 1857-1868 ◽  
Author(s):  
Petr Novák ◽  
Ivo Roušar

The Sherwood criterion was calculated for a flow of ions to the surface of a plate electrode during natural convection by solving the Navier-Stokes, convective diffusion, and convective heat transfer equations. The solution for the boundary layer region was performed by the collocation method using orthogonal exponential polynomials. Values of the Sh criterion were obtained for Sc ##m <500; 2 000>, Pr ##m <5; 20>, and GrT/GrM ##m <0.2; 8.0>. A comparison with literature data revealed the best agreement with average errors of +2.0 and -1.4%. Another equation with an error of only +0.5% is proposed.


2014 ◽  
Vol 348 ◽  
pp. 123-138 ◽  
Author(s):  
Andrey V. Minakov ◽  
Alexander S. Lobasov ◽  
M.I. Pryazhnikov ◽  
D.V. Guzei

An experiment-calculated investigation of forced convection of nanofluids based on Al2O3nanoparticles was carried out. The hydrodynamic description and a model of homogeneous nanofluids were used. The homogeneous nanofluids model assumes that the hydrodynamics and heat transfer can be described by conventional Navier-Stokes and heat transfer equations with the physical parameters corresponding to nanofluids. The results showed that this model very well described the experimental data in some cases. However, in some other cases, there are discrepancies between experiment and theory that can be explained by the real heterogeneity of nanofluids and the errors in the experimental determination of thermal conductivity and viscosity of nanofluids.


1983 ◽  
Vol 48 (8) ◽  
pp. 2213-2231 ◽  
Author(s):  
Petr Novák ◽  
Ivo Roušar

Simultaneous transfer of heat and ions to a vertical plate electrode in the region of free convection was treated mathematically by solving the Navier-Stokes, convective diffusion, and convective heat transfer equations. The direction of flow due to heat flux was considered opposite to that due to flux of ions. A criterion equation was proposed for the calculation of the Sherwood criterion with an error smaller than 2%. This was verified experimentally by measuring the limiting current densities for electrolytes containing K4Fe(CN)6 and K3Fe(CN)6 with KOH as base electrolyte.


2015 ◽  
Vol 47 (9) ◽  
pp. 10-22 ◽  
Author(s):  
Yuriy P. Ladikov-Roev ◽  
Oleg K. Cheremnykh ◽  
Alla K. Fedorenko ◽  
Vladimir E. Nabivach

2021 ◽  
Vol 915 ◽  
Author(s):  
Byron Williams ◽  
Usama Kadri ◽  
Ali Abdolali

Abstract


Mathematics ◽  
2021 ◽  
Vol 9 (7) ◽  
pp. 756
Author(s):  
Federico Lluesma-Rodríguez ◽  
Francisco Álcantara-Ávila ◽  
María Jezabel Pérez-Quiles ◽  
Sergio Hoyas

One numerical method was designed to solve the time-dependent, three-dimensional, incompressible Navier–Stokes equations in turbulent thermal channel flows. Its originality lies in the use of several well-known methods to discretize the problem and its parallel nature. Vorticy-Laplacian of velocity formulation has been used, so pressure has been removed from the system. Heat is modeled as a passive scalar. Any other quantity modeled as passive scalar can be very easily studied, including several of them at the same time. These methods have been successfully used for extensive direct numerical simulations of passive thermal flow for several boundary conditions.


1997 ◽  
Vol 119 (4) ◽  
pp. 794-801 ◽  
Author(s):  
J. Luo ◽  
B. Lakshminarayana

The boundary layer development and convective heat transfer on transonic turbine nozzle vanes are investigated using a compressible Navier–Stokes code with three low-Reynolds-number k–ε models. The mean-flow and turbulence transport equations are integrated by a four-stage Runge–Kutta scheme. Numerical predictions are compared with the experimental data acquired at Allison Engine Company. An assessment of the performance of various turbulence models is carried out. The two modes of transition, bypass transition and separation-induced transition, are studied comparatively. Effects of blade surface pressure gradients, free-stream turbulence level, and Reynolds number on the blade boundary layer development, particularly transition onset, are examined. Predictions from a parabolic boundary layer code are included for comparison with those from the elliptic Navier–Stokes code. The present study indicates that the turbine external heat transfer, under real engine conditions, can be predicted well by the Navier–Stokes procedure with the low-Reynolds-number k–ε models employed.


Sign in / Sign up

Export Citation Format

Share Document