The effect of fuel gas mixtures and air flow rates on electrical properties of solid oxide fuel cell

2021 ◽  
Vol 2021 (3) ◽  
pp. 119-126
Author(s):  
N. O. Lysunenko ◽  
◽  
Y. M. Brodnikovskyi ◽  
V. I. Chedryk ◽  
D. M. Brodnikovskyi ◽  
...  

Fuel Cells are one of the most efficient and environmentally friendly devices for electricity generation, which are developing rapidly and are already in the early stages of commercialization. Solid Oxide Fuel Cells (SOFC) areone of the most promising their types due to the highest efficiency, fuel flexibility (H2, CnHm, CO etc.) and no needs in platinum group catalysts. The performance of SOFC is affected by various polarization losses, which aredependant on selected materials, their structure and SOFC operation parameters. Over the last decade, much attention is given to the study of SOFC’s electrochemical properties at different operating regimes: temperatures, fuels, fuel and oxidantflow rates etc. The work is devoted to studying the influence of the model fuel (5% H2—Ar) and air (oxidant) flow rates on electrical properties of Solid Oxide Fuel Cellat 800 °C to determine the best combination of gas flow rates, which provide the maximum values of specific electric power. The fuel (0,35 l/min) and oxidant (1 l/min)flow rates was found as the optimal operation regime of fuel and air supply for the SOFC tested. The highest electrical densityto be ensured by the model fuel was determined as 34 mW/cm2. The amount / flow rate of oxidant and fuel gases supplied to the fuel cell does not correspond to the ratio of the reagents of the chemical reaction of oxidation of the fuel. This difference is explained by the fact that the SOFC effectiveness of fuel and oxidant utilization depends not only from to the properties structure and materials of each components: anode, cathode, electrolyte, but also from concentration of fuel and oxidant in model fuel or air, which also creates a barrier for oxidant and fuel molecules to reach the reaction zone. Keywords: Solid Oxide Fuel Cell, electrical properties, fuelgasmixtures, hydrogen, oxidant.

2016 ◽  
Vol 4 (40) ◽  
pp. 15390-15399 ◽  
Author(s):  
Julia Lyagaeva ◽  
Nikolay Danilov ◽  
Gennady Vdovin ◽  
Junfu Bu ◽  
Dmitry Medvedev ◽  
...  

The present work describes the features of the synthesis and physicochemical and electrical properties of a new Dy-doped BaCeO3–BaZrO3 proton-conducting electrolyte as well as its application in a reversible solid oxide fuel cell.


RSC Advances ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 7-14
Author(s):  
Cheng Cheng Wang ◽  
Mortaza Gholizadeh ◽  
Bingxue Hou ◽  
Xincan Fan

Strontium segregation in a La0.6Sr0.4Co0.2Fe0.8O3−δ (LSCF) electrode reacts with Cr and S in a solid oxide fuel cell (SOFC), which can cause cell performance deterioration.


Author(s):  
Dustin Lee ◽  
Jing-Kai Lin ◽  
Chun-Huang Tsai ◽  
Szu-Han Wu ◽  
Yung-Neng Cheng ◽  
...  

The effects of isothermally long-term and thermal cycling tests on the performance of an ASC type commercial solid oxide fuel cell (SOFC) have been investigated. For the long-term test, the cells were tested over 5000 h in two stages, the first 3000 h and the followed 2000 h, under the different flow rates of hydrogen and air. Regarding the thermal cycling test, 60 cycles in total were also divided into two sections, the temperature ranges of 700 °C to 250 °C and 700 °C to 50 °C were applied for the every single cycle of first 30 cycles and the later 30 cycles, respectively. The results of long-term test show that the average degradation rates for the cell in the first 3000 h and the followed 2000 h under different flow rates of fuel and air are 1.16 and 2.64%/kh, respectively. However, there is only a degradation of 6.6% in voltage for the cell after 60 thermal cycling tests. In addition, it is found that many pores formed in the anode of the cell which caused by the agglomeration of Ni after long-term test. In contrast, the vertical cracks penetrating through the cathode of the cell and the in-plane cracks between the cathode and barrier layer of the cell formed due to the coefficient of thermal expansion (CTE) mismatch after 60 thermal cycling tests.


2017 ◽  
Vol 10 (4) ◽  
pp. 964-971 ◽  
Author(s):  
Yu Chen ◽  
Yan Chen ◽  
Dong Ding ◽  
Yong Ding ◽  
YongMan Choi ◽  
...  

A hybrid catalyst coating dramatically enhances the electrocatalytic activity and durability of a solid oxide fuel cell cathode.


2005 ◽  
Vol 127 (1) ◽  
pp. 86-90 ◽  
Author(s):  
Eric A. Liese ◽  
Randall S. Gemmen

Solid Oxide Fuel Cell (SOFC) developers are presently considering both internal and external reforming fuel cell designs. Generally, the endothermic reforming reaction and excess air through the cathode provide the cooling needed to remove waste heat from the fuel cell. Current information suggests that external reforming fuel cells will require a flow rate twice the amount necessary for internal reforming fuel cells. The increased airflow could negatively impact system performance. This paper compares the performance among various external reforming hybrid configurations and an internal reforming hybrid configuration. A system configuration that uses the reformer to cool a cathode recycle stream is introduced, and a system that uses interstage external reforming is proposed. Results show that the thermodynamic performance of these proposed concepts are an improvement over a base-concept external approach, and can be better than an internal reforming hybrid system, depending on the fuel cell cooling requirements.


2020 ◽  
Vol 8 (48) ◽  
pp. 25978-25985
Author(s):  
Jun Li ◽  
Jie Hou ◽  
Xiuan Xi ◽  
Ying Lu ◽  
Mingming Li ◽  
...  

Symmetrical solid oxide fuel cell reactor with BaZr0.1Ce0.7Y0.1Yb0.1O3−δ as electrolyte and La0.6Sr0.4Fe0.8Nb0.1Cu0.1O3−δ as electrodes is applied to cogenerate ethylene and electricity.


Sign in / Sign up

Export Citation Format

Share Document