scholarly journals ANALYTICAL METHOD FOR DETERMINING OPTIMAL PARAMETERS AND SCHEMES FOR VOLTAGE-REGULATED INDUCTION MOTORS WITH SINGLE-PHASE POWER SUPPLY

Author(s):  
Yu.V. Shurub ◽  
◽  
Yu.L. Tsitsyurskiy ◽  

On the basis of the method of symmetric components, an analytical method is proposed for calculating the coefficients that determine the relationship between the components of the positive and negative sequences of the parameters of the operating mode of an induction motor and the parameters of its power supply for some circuits for the inclusion of voltage-controlled three-phase induction motors with phase-shifting capacitors powered by a single-phase network. On the basis of this technique, the optimal parameters of phase-shifting capacitors can be determined and rational schemes for connecting three-phase induction motors to a single-phase network can be selected. Ref. 7, fig. 3, tables 2.

2018 ◽  
Vol 215 ◽  
pp. 01023 ◽  
Author(s):  
Zuriman Anthony ◽  
Erhaneli Erhaneli ◽  
Zulkarnaini Zulkarnaini

A 1-phase induction motor usually has a complicated windings design which compares to polyphase induction motor. In addition, a large capacitor start is required to operate the motor. It is an expensive way to operate the motor if it compare to polyphase induction motor. So, a new innovation method is required to make the motor more simple and cheaper. This research is purposed to study a new winding design for a single-phase capacitor motor. Winding design of the motor was conducted to a simple winding design like a 4-phase induction motor that has four identical windings. The comparator motor that use in this study was a Three-phase induction motor with data 1400 RPM, 1.5 HP, 50Hz, 380/220V, Y/Δ, 2.74/4.7A, 4 poles, that had the same current rating which the proposed method. The result showed that the motor design on this proposed method could be operated at 88.18 % power rating with power factor close to unity.


2014 ◽  
Vol 635-637 ◽  
pp. 1404-1407
Author(s):  
Yuan Xing Zhang ◽  
Fei Li ◽  
Ya Li Shen ◽  
Lei Juan Yang ◽  
Jie Li ◽  
...  

Problems of power quality have been increasingly concerned by the researchers, as the domestic appliances we are usually used are single-phase load, which mainly causes the unbalance of three-phase voltage of power supply. If the induction motor is supplied by three-phase unbalanced voltage, the currents, active and reactive power, efficiency, and losses are affected as the negative-sequence current appears, this paper is emphasized on the induction motor’s characteristics when its’ power supply is three-phase unbalanced voltage by experimental research.


2001 ◽  
Vol 37 (4) ◽  
pp. 2837-2840
Author(s):  
Y. Sakamoto ◽  
T. Ohkubo ◽  
M. Ohta ◽  
M. Natsusaka

2022 ◽  
Vol 1211 (1) ◽  
pp. 012018
Author(s):  
T M Khalina ◽  
S Yu Eremochkin ◽  
D V Dorokhov

Abstract Agriculture is a socially significant sector of the economy. The growth of agricultural production contributes to the stable development of society. It is necessary to use new mechanisms driven by induction motors to increase agricultural productivity. Three-phase induction motors are mainly used in the electric drive of agricultural machines. At the same time, it is advisable to use a single-phase network to supply power to remote farms. In this regard, the development of a single-phase electric drive using three-phase motors becomes relevant. In this work, a study of an original semiconductor device for starting a three-phase induction motor from a single-phase network is made. The simulation model of the device created in the Matlab Simulink environment made it possible to study the electromechanical characteristics of the induction motor when operating from a single-phase network. A comparison of the characteristics of the motor during operation from a three-phase and a single-phase network is carried out. The most significant results of the work are the data obtained that the developed device can be used to start and operate a squirrel cage induction motor from a single-phase network. At the same time, the engine energy parameters change slightly.


Author(s):  
H. Outzguinrimt ◽  
M. Chraygane ◽  
M. Lahame ◽  
R. Oumghar ◽  
R. Batit ◽  
...  

<p>This paper describes the development and implementation of a digital simulation model of a three-phase transformer relates to shunt core transformer, which used to drive magnetron tubes in the microwave. The focus of this study is based on modeling of a new shell-type of three limbs three-phase transformer. The model uses to feed two magnetrons instead of one magnetron per phase. The proposed model is established on the simultaneous analysis of a duo electromagnetic lumped component equivalent circuit. This latter was implemented in a MATLAB environment under rated conditions. The results obtained from the application of the analytical method are provided results in conformity to the experimental tests in the case of single phase high voltage power supply for one magnetron.</p>


2019 ◽  
Vol 1 (60) ◽  
pp. 122-127
Author(s):  
Roman M. Panov ◽  
◽  
Natalia V. Pribylova ◽  
Sergey A. Filonov ◽  
◽  
...  

Author(s):  
Abdelhafiz Zeiada ◽  
Ngu Eng Eng ◽  
Moataz Saad Balla

Many experiments have been conducted in this research work which is (i) connecting a zigzag transformer with an induction motor, (ii) connecting a zigzag transformer with multiple induction motors, and (iii) connecting multiple zigzag transformers with multiple induction motors. These experiments provide a thorough understanding of the sequence network connections under the single-phasing condition of a three-phase induction motor. Moreover, these experiments protect the three-phase induction motors from unbalancing voltage supply and allow the induction motor to start under unbalance voltage supply. Additionally, they keep the three-phase induction motor running even any one of the three phases disconnected from the power supply without creating excessive heat in the motor winding.


Energetika ◽  
2021 ◽  
Vol 67 (1) ◽  
Author(s):  
Oleksiy Iegorov ◽  
Olga Iegorova ◽  
Oleksandr Miroshnyk ◽  
Artem Cherniuk

Keywords: Induction motor, windings, phase-shifting capacitor, efficiency, positive and reverse sequence currents Induction motors consume almost 70% of the world’s electricity as they are the driving force behind the vast majority of rotary mechanisms [1]. For industrial and domestic purposes alone, about a million new electric motors are commissioned annually. Single-phase induction motors (SPIMs) are superior to all other types of electrical machines that operate on a single-phase AC voltage network because of their simple and robust design and low cost. Therefore, a small improvement in the SPIM energy performance can have a strong impact on energy consumption worldwide and ultimately reduce emissions of harmful substances into environment. This article presents a technique for optimizing SPIM windings in order to maximize efficiency with a given and fixed phase-shifting capacitor. The positive effect of the application of the proposed method is confirmed by the results of SPIM industrial tests with various powers and rotor speeds.


Sign in / Sign up

Export Citation Format

Share Document