scholarly journals Quantum chemical modeling of antioxidant activity of glutathione interacting with hydroxyl- and superoxide anion radicals

2015 ◽  
Vol 87 (2) ◽  
pp. 156-162 ◽  
Author(s):  
N. V. Solovyova ◽  
2017 ◽  
Vol 89 (6) ◽  
pp. 22-30
Author(s):  
T. Y. Kuznetsova ◽  
◽  
N. V. Solovyova ◽  
V. V. Solovyov ◽  
V. O. Kostenko ◽  
...  

Antioxidants ◽  
2019 ◽  
Vol 8 (8) ◽  
pp. 314 ◽  
Author(s):  
Haixiang Wang ◽  
Shaofeng Wang ◽  
Hua Zhu ◽  
Suilou Wang ◽  
Jiudong Xing

In this study, the inclusion complexes of lycopene with β-cyclodextrin (β-CD) were prepared by the precipitation method. Then the inclusion complexes were characterized by the scanning electron microscopy (SEM), ultraviolet-visible spectroscopy (UV), microscopic observation, liquid chromatography, differential scanning calorimetry (DSC) and phase-solubility study. Moreover, the stability and antioxidant activity were tested. The results showed that lycopene was embedded into the cavity of β-CD with a 1:1 stoichiometry. Moreover, the thermal and irradiant stabilities of lycopene were all significantly increased by the formation of lycopene/β-CD inclusion complexes. Antioxidant properties of lycopene and its inclusion complexes were evaluated on the basis of measuring the scavenging activity for 1,1-diphenyl-2-picrylhydrazyl (DPPH), hydroxyl and superoxide anion radicals. The results showed that the scavenging activity of DPPH radicals was obviously increased by the formation of the inclusion complex with β-cyclodextrin at concentrations of 5–30 μg/mL, however, some significant positive effects on the scavenging activity of hydroxyl and superoxide anion radicals were not observed and the reasons are worth further study.


Chemosensors ◽  
2021 ◽  
Vol 9 (6) ◽  
pp. 135
Author(s):  
Pattan-Siddappa Ganesh ◽  
Sang-Youn Kim ◽  
Savas Kaya ◽  
Rajae Salim ◽  
Ganesh Shimoga ◽  
...  

To develop an electrochemical sensor for electroactive molecules, the choice and prediction of redox reactive sites of the modifier play a critical role in establishing the sensing mediating mechanism. Therefore, to understand the mediating mechanism of the modifier, we used advanced density functional theory (DFT)-based quantum chemical modeling. A carbon paste electrode (CPE) was modified with electropolymerization of brilliant blue, later employed for the detection of paracetamol (PA) and folic acid (FA). PA is an analgesic, anti-inflammatory and antipyretic prescription commonly used in medical fields, and overdose or prolonged use may harm the liver and kidney. The deficiency of FA associated with neural tube defects (NTDs) and therefore the quantification of FA are very essential to prevent the problems associated with congenital deformities of the spinal column, skull and brain of the fetus in pregnant women. Hence, an electrochemical sensor based on a polymerized brilliant blue-modified carbon paste working electrode (BRB/CPE) was fabricated for the quantification of PA and FA in physiological pH. The real analytical applicability of the proposed sensor was judged by employing it in analysis of a pharmaceutical sample, and good recovery results were obtained. The potential excipients do not have a significant contribution to the electro-oxidation of PA at BRB/CPE, which makes it a promising electrochemical sensing platform. The real analytical applicability of the proposed method is valid for pharmaceutical analysis in the presence of possible excipients. The prediction of redox reactive sites of the modifier by advanced quantum chemical modeling-based DFT may lay a new foundation for researchers to establish the modifier–analyte interaction mechanisms.


2017 ◽  
Vol 66 (12) ◽  
pp. 2227-2233 ◽  
Author(s):  
V. B. Kobychev ◽  
V. B. Orel ◽  
D. V. Zankov ◽  
N. M. Vitkovskaya ◽  
B. A. Trofimov

2007 ◽  
Vol 119 (3) ◽  
pp. 418-424 ◽  
Author(s):  
Flavio Lumento ◽  
Vinicio Zanirato ◽  
Stefania Fusi ◽  
Elena Busi ◽  
Loredana Latterini ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document