scholarly journals The Pierre Auger Observatory: Studying the Highest Energy Frontier

2019 ◽  
Vol 64 (7) ◽  
pp. 646
Author(s):  
I. Valiño

We highlight the main results obtained by the Pierre Auger Collaboration in its quest to unveil the mysteries associated with the nature and origin of the ultra-high energy cosmic rays, the highest-energy particles in the Universe. The observatory has steadily produced high-quality data for more than 15 years, which have already led to a number of major breakthroughs in the field contributing to the advance of our understanding of these extremely energetic particles. The interpretation of our measurements so far opens new questions which will be addressed by the on-going upgrade of the Pierre Auger Observatory.

2011 ◽  
Vol 20 (supp02) ◽  
pp. 50-56
Author(s):  
◽  
PETER SCHIFFER

The Pierre Auger Observatory is the world's largest experiment for the measurement of ultra-high energy cosmic rays (UHECRs). These UHECRs are assumed to be to be charged particles, and thus are deflected in cosmic magnetic fields. Recent results of the Pierre Auger Observatory addressing the complex of energy ordering of the UHECRs arrival directions are reviewed in this contribution. So far no significant energy ordering has been observed.


2012 ◽  
Vol 18 ◽  
pp. 221-229
Author(s):  
◽  
J. R. T. DE MELLO NETO

We present the status and the recent measurements from the Pierre Auger Observatory. The energy spectrum is described and its features discussed. We report searches for anisotropy of cosmic rays arrival directions in large scales and through correlation with catalogues of celestial objects. The measurement of the cross section proton-air is discussed. Finally, the mass composition is addressed with the measurements of the variation of the depth of shower maximum with energy and with the muon density at ground.


2013 ◽  
Vol 28 (18) ◽  
pp. 1350075
Author(s):  
HANG BAE KIM

We study the anisotropy in the arrival directions of Pierre Auger Observatory (PAO) ultra-high-energy cosmic rays (UHECRs), using the point source correlational angular distance distribution (CADD). The result shows that the anisotropy is characterized by one prominent excess region and one void region. The excess region is located near the Centaurus A direction, supporting that the Centaurus A is a promising UHECR source. The void region near the south pole direction may be used to limit the diffuse isotropic background contribution.


2003 ◽  
Vol 18 (18) ◽  
pp. 1235-1245 ◽  
Author(s):  
DOUGLAS R. BERGMAN

The HiRes collaboration has recently announced preliminary measurements of the energy spectrum of ultra-high energy cosmic rays (UHECR), as seen in monocular analyses from each of the two HiRes sites. This spectrum is consistent with the existence of the GZK cutoff, as well other aspects of the energy loss processes that cause the GZK cutoff. Based on the analytic energy loss formalism of Berezinsky et al., the HiRes spectra favor a distribution of extragalactic sources that has a similar distribution to that of luminous matter in the universe, both in its local over-density and in its cosmological evolution.


Sign in / Sign up

Export Citation Format

Share Document