hybrid detection
Recently Published Documents


TOTAL DOCUMENTS

144
(FIVE YEARS 52)

H-INDEX

14
(FIVE YEARS 2)

Plant Gene ◽  
2021 ◽  
pp. 100349
Author(s):  
Kittisak Buddhachat ◽  
Nattaporn Sripairoj ◽  
Tasanai Punjansing ◽  
Anupan Kongbangkerd ◽  
Phithak Inthima ◽  
...  

2021 ◽  
Vol 10 (6) ◽  
pp. 2997-3006
Author(s):  
Hasmaini Mohamad ◽  
Zuhaila Mat Yasin ◽  
Nur Ashida Salim ◽  
Bibi Norasiqin Sheikh Rahimullah ◽  
Kanendra Naidu

Interconnection of distributed generation (DG) in distribution system will result in formation of islands in the event of loss of main supply. This scenario is harmful to the power system, hence quick detection is critical to halt the formation of islands. Among the common passive and active detection methods available, the hybrid detection method is identified as the most reliable method. This paper proposes a new hybrid method using the combination of passive and active technique which is the rate of change of frequency (ROCOF) and load impedance, respectively. The passive method works when the value of ROCOF exceeds the threshold value which is set at 0.3Hz/s. The active method works when it detects low value of ROCOF and immediately inject a pre-specified load into the system to increase the ROCOF value up to its threshold value. Simulation study on different case studies is carried out on distribution test system to evaluate the performance of the proposed method. Results show that this method is effective in detecting any events that could result in islanding.


2021 ◽  
Vol 11 (22) ◽  
pp. 10976
Author(s):  
Rana Almohaini ◽  
Iman Almomani ◽  
Aala AlKhayer

Android ransomware is one of the most threatening attacks that is increasing at an alarming rate. Ransomware attacks usually target Android users by either locking their devices or encrypting their data files and then requesting them to pay money to unlock the devices or recover the files back. Existing solutions for detecting ransomware mainly use static analysis. However, limited approaches apply dynamic analysis specifically for ransomware detection. Furthermore, the performance of these approaches is either poor or often fails in the presence of code obfuscation techniques or benign applications that use cryptography methods for their APIs usage. Additionally, most of them are unable to detect ransomware attacks at early stages. Therefore, this paper proposes a hybrid detection system that effectively utilizes both static and dynamic analyses to detect ransomware with high accuracy. For the static analysis, the proposed hybrid system considered more than 70 state-of-the-art antivirus engines. For the dynamic analysis, this research explored the existing dynamic tools and conducted an in-depth comparative study to find the proper tool to integrate it in detecting ransomware whenever needed. To evaluate the performance of the proposed hybrid system, we analyzed statically and dynamically over one hundred ransomware samples. These samples originated from 10 different ransomware families. The experiments’ results revealed that static analysis achieved almost half of the detection accuracy—ranging around 40–55%, compared to the dynamic analysis, which reached a 100% accuracy rate. Moreover, this research reports some of the high API classes, methods, and permissions used in these ransomware apps. Finally, some case studies are highlighted, including failed running apps and crypto-ransomware patterns.


2021 ◽  
Vol 22 (2) ◽  
Author(s):  
Jianxing Zhu ◽  
Lina Huo ◽  
Mohd Dilshad Ansari ◽  
Mohammad Asif Ikbal

The development of the Internet of Things has prominently expanded the perception of human beings, but ensuing security issues have attracted people's attention. From the perspective of the relatively weak sensor network in the Internet of Things. Proposed method is aiming at the characteristics of diversification and heterogeneity of collected data in sensor networks; the data set is clustered and analyzed from the aspects of network delay and data flow to extract data characteristics. Then, according to the characteristics of different types of network attacks, a hybrid detection method for network attacks is established. An efficient data intrusion detection algorithm based on K-means clustering is proposed. This paper proposes a network node control method based on traffic constraints to improve the security level of the network. Simulation experiments show that compared with traditional password-based intrusion detection methods; the proposed method has a higher detection level and is suitable for data security protection in the Internet of Things. This paper proposes an efficient intrusion detection method for applications with Internet of Things.


2021 ◽  
Vol 13 (21) ◽  
pp. 4228
Author(s):  
Yuri Cotroneo ◽  
Paolo Celentano ◽  
Giuseppe Aulicino ◽  
Angelo Perilli ◽  
Antonio Olita ◽  
...  

The Western Mediterranean basin (WMED) is characterized by the presence of energetic and dynamic mesoscale cyclonic and anticyclonic eddies. They mainly originate along the Algerian and the Northern currents and have a large influence on the basin circulation. Eddies can last for months, with longer lifetimes associated with the anticyclones, which can move far from their areas of origin. As they partially isolate and transfer water masses, they also have an impact on water properties (physical, chemical and biological), pollutant’s dispersion and transport of eggs, larvae and planktonic organisms. In this study, a connectivity analysis method is applied to the anticyclonic eddies (AEs) identified by an automated hybrid detection and tracking algorithm south of 42° N in the WMED. The same methodology is also applied to the trajectories of Lagrangian surface drifters available in the study area. The purpose is to highlight the connections between different areas of the basin linked to eddy activities in addition to the connectivity due to the mean surface circulation. Drifter data analysis showed that all the WMED sub-basins are strongly interconnected, with the mean surface circulation allowing a shortcut connection among many areas of the basin. The connectivity analysis of the AEs tracks shows that although AEs are ubiquitous in the WMED, their connectivity is limited to well-defined regions, depending on their origin location. Three main regions: the south-western, the south-eastern and the northern parts of the basin are characterized by AEs recirculation, with sporadic export of eddies to the other WMED zones.


Author(s):  
Ashish Singh ◽  
Kakali Chatterjee ◽  
Suresh Chandra Satapathy

AbstractThe Mobile Edge Computing (MEC) model attracts more users to its services due to its characteristics and rapid delivery approach. This network architecture capability enables users to access the information from the edge of the network. But, the security of this edge network architecture is a big challenge. All the MEC services are available in a shared manner and accessed by users via the Internet. Attacks like the user to root, remote login, Denial of Service (DoS), snooping, port scanning, etc., can be possible in this computing environment due to Internet-based remote service. Intrusion detection is an approach to protect the network by detecting attacks. Existing detection models can detect only the known attacks and the efficiency for monitoring the real-time network traffic is low. The existing intrusion detection solutions cannot identify new unknown attacks. Hence, there is a need of an Edge-based Hybrid Intrusion Detection Framework (EHIDF) that not only detects known attacks but also capable of detecting unknown attacks in real time with low False Alarm Rate (FAR). This paper aims to propose an EHIDF which is mainly considered the Machine Learning (ML) approach for detecting intrusive traffics in the MEC environment. The proposed framework consists of three intrusion detection modules with three different classifiers. The Signature Detection Module (SDM) uses a C4.5 classifier, Anomaly Detection Module (ADM) uses Naive-based classifier, and Hybrid Detection Module (HDM) uses the Meta-AdaboostM1 algorithm. The developed EHIDF can solve the present detection problems by detecting new unknown attacks with low FAR. The implementation results illustrate that EHIDF accuracy is 90.25% and FAR is 1.1%. These results are compared with previous works and found improved performance. The accuracy is improved up to 10.78% and FAR is reduced up to 93%. A game-theoretical approach is also discussed to analyze the security strength of the proposed framework.


Author(s):  
Wei Ma ◽  
Xing Wang ◽  
Jiguang Wang ◽  
Qianyun Chen

Botnet is a serious threat for the Internet and it has created great damage to the Internet. How to detect botnet has become an ongoing endeavor research. Series of methods have been discussed in recent research. However, one of the remaining challenges is that the high computational overhead. In this paper, a lightweight hybrid botnet detection method is proposed. Considering the features in the botnet data packets and the characteristic of employing DGA (Domain Generation Algorithm) domain names to connect to the botnet, two sensors are designed and deployed individually and parallelly. Signature detection is used on the gateway sensor to dig out known bot software and deep learning based techniques are used on the DNS (Domain Name Server) server sensor to find DGA domain names. With this method, the computational overhead would be shared by the two sensors and experiments are conducted and the results indicate that the method is effective in detecting botnet


2021 ◽  
pp. 1-16
Author(s):  
Kubilay Demir ◽  
Vedat Tümen

Detection and diagnosis of the plant diseases in the early stage significantly minimize yield losses. Image-based automated plant diseases identification (APDI) tools have started to been widely used in pest managements strategies. The current APDI systems rely on images captured in laboratory conditions, which hardens the usage of the APDI systems by smallholder farmers. In this study, we investigate whether the smallholder farmers can exploit APDI systems using their basic and cheap unmanned autonomous vehicles (UAVs) with standard cameras. To create the tomato images like the one taken by UAVs, we build a new dataset from a public dataset by using image processing tools. The dataset includes tomato leaf photographs separated into 10 classes (diseases or healthy). To detect the diseases, we develop a new hybrid detection model, called SpikingTomaNet, which merges a novel deep convolutional neural network model with spiking neural network (SNN) model. This hybrid model provides both better accuracy rates for the plant diseases identification and more energy efficiency for the battery-constrained UAVs due to the SNN’s event-driven architecture. In this hybrid model, the features extracted from the CNN model are used as the input layer for SNNs. To assess our approach’s performance, firstly, we compare the proposed CNN model inside the developed hybrid model with well-known AlexNet, VggNet-5 and LeNet models. Secondly, we compare the developed hybrid model with three hybrid models composed of combinations of the well-known models and SNN model. To train and test the proposed neural network, 32022 images in the dataset are exploited. The results show that the SNN method significantly increases the success, especially in the augmented dataset. The experiment result shows that while the proposed hybrid model provides 97.78% accuracy on original images, its success on the created datasets is between 59.97%–82.98%. In addition, the results shows that the proposed hybrid model provides better overall accuracy in the classification of the diseases in comparison to the well-known models and LeNet and their combination with SNN.


Animals ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 2193
Author(s):  
Angelika Podbielska ◽  
Katarzyna Piórkowska ◽  
Tomasz Szmatoła

This study aimed to characterize the population structure and genetic diversity of alpacas maintained in Poland using 17 microsatellite markers recommended by the International Society for Animal Genetics. The classification of llamas, alpacas, and hybrids of both based on phenotype is often difficult due to long-term admixture. Our results showed that microsatellite markers can distinguish alpacas from llamas and provide information about the level of admixture of one species in another. Alpacas admixed with llamas constituted 8.8% of the tested individuals, with the first-generation hybrid displaying only 7.4% of llama admixture. The results showed that Poland hosts a high alpaca genetic diversity as a consequence of their mixed origin. More than 200 different alleles were identified and the average observed heterozygosity and expected heterozygosity values were 0.745 and 0.768, respectively, the average coefficient of inbreeding was 0.034, and the average polymorphism information content value was 0.741. The probability of exclusion for one parent was estimated at 0.99995 and for two parents at 0.99999.


BMC Genomics ◽  
2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Jenni Harmoinen ◽  
Alina von Thaden ◽  
Jouni Aspi ◽  
Laura Kvist ◽  
Berardino Cocchiararo ◽  
...  

Abstract Background Understanding the processes that lead to hybridization of wolves and dogs is of scientific and management importance, particularly over large geographical scales, as wolves can disperse great distances. However, a method to efficiently detect hybrids in routine wolf monitoring is lacking. Microsatellites offer only limited resolution due to the low number of markers showing distinctive allele frequencies between wolves and dogs. Moreover, calibration across laboratories is time-consuming and costly. In this study, we selected a panel of 96 ancestry informative markers for wolves and dogs, derived from the Illumina CanineHD Whole-Genome BeadChip (174 K). We designed very short amplicons for genotyping on a microfluidic array, thus making the method suitable also for non-invasively collected samples. Results Genotypes based on 93 SNPs from wolves sampled throughout Europe, purebred and non-pedigree dogs, and suspected hybrids showed that the new panel accurately identifies parental individuals, first-generation hybrids and first-generation backcrosses to wolves, while second- and third-generation backcrosses to wolves were identified as advanced hybrids in almost all cases. Our results support the hybrid identity of suspect individuals and the non-hybrid status of individuals regarded as wolves. We also show the adequacy of these markers to assess hybridization at a European-wide scale and the importance of including samples from reference populations. Conclusions We showed that the proposed SNP panel is an efficient tool for detecting hybrids up to the third-generation backcrosses to wolves across Europe. Notably, the proposed genotyping method is suitable for a variety of samples, including non-invasive and museum samples, making this panel useful for wolf-dog hybrid assessments and wolf monitoring at both continental and different temporal scales.


Sign in / Sign up

Export Citation Format

Share Document