scholarly journals Mathematical Model for MERS-COV Disease Transmission with Medical Mask Usage and Vaccination

Author(s):  
Muhammad Manaqib ◽  
Irma Fauziah ◽  
Mujiyanti Mujiyanti

AbstractThis study developed a model of the spread of MERS-CoV disease using the SEIR model which was added by a health mask and vaccination factor as a preventive measure. The population is divided into six subpopulations namely susceptible subpopulations not using health masks and using health masks, exposed subpopulations, infected subpopulations not using health masks and using health masks, and recovering subpopulations. The results are obtained two equilibrium points, namely disease-free equilibrium points and endemic equilibrium points. Analysis of the stability of the disease-free equilibrium point using linearization around the equilibrium point. As a result, the asymptotic stable disease-free local equilibrium point if the base reproduction number is less than one. Numerical simulation models for MERS-CoV disease are carried out in line with the analysis of model behavior.Keywords: MERS-CoV, SEIR Model, Stability Equilibrium Point, Basic Reproduction Number. AbstrakPenelitian ini mengembangkan model penyebaran penyakit MERS-CoV menggunakan model SEIR yang ditambahkan faktor masker kesehatan dan vaksinasi sebagai upaya pencegahan. Populasi dibagi menjadi enam subpopulasi yaitu subpopulasi rentan tidak menggunakan masker kesehatan dan menggunakan masker kesehatan, subpopulasi laten, subpopulasi terinfeksi tidak menggunakan masker kesehatan dan menggunakan masker kesehatan, serta subpopulasi sembuh. Hasilnya diperoleh dua titik ekuilibrium yaitu titik ekulibrium bebas penyakit dan endemik. Analisis kestabilan titik ekuilibrium bebas penyakit menggunakan linearisasi disekitar titik ekuilibrium. Hasilnya, titik ekuilibrium bebas penyakit stabil asimtotik lokal jika bilangan reproduksi dasar kurang dari satu. Simulasi numerik model untuk penyakit MERS-CoV yang dilakukan sejalan dengan analisis perilaku model.Kata kunci: MERS-CoV, Model SEIR, Kestabilan Titik Ekuilibrium, Bilangan Reproduksi Dasar.

2020 ◽  
Vol 10 (22) ◽  
pp. 8296 ◽  
Author(s):  
Malen Etxeberria-Etxaniz ◽  
Santiago Alonso-Quesada ◽  
Manuel De la Sen

This paper investigates a susceptible-exposed-infectious-recovered (SEIR) epidemic model with demography under two vaccination effort strategies. Firstly, the model is investigated under vaccination of newborns, which is fact in a direct action on the recruitment level of the model. Secondly, it is investigated under a periodic impulsive vaccination on the susceptible in the sense that the vaccination impulses are concentrated in practice in very short time intervals around a set of impulsive time instants subject to constant inter-vaccination periods. Both strategies can be adapted, if desired, to the time-varying levels of susceptible in the sense that the control efforts be increased as those susceptible levels increase. The model is discussed in terms of suitable properties like the positivity of the solutions, the existence and allocation of equilibrium points, and stability concerns related to the values of the basic reproduction number. It is proven that the basic reproduction number lies below unity, so that the disease-free equilibrium point is asymptotically stable for larger values of the disease transmission rates under vaccination controls compared to the case of absence of vaccination. It is also proven that the endemic equilibrium point is not reachable if the disease-free one is stable and that the disease-free equilibrium point is unstable if the reproduction number exceeds unity while the endemic equilibrium point is stable. Several numerical results are investigated for both vaccination rules with the option of adapting through ime the corresponding efforts to the levels of susceptibility. Such simulation examples are performed under parameterizations related to the current SARS-COVID 19 pandemic.


2004 ◽  
Vol 12 (04) ◽  
pp. 399-417 ◽  
Author(s):  
M. KGOSIMORE ◽  
E. M. LUNGU

This study investigates the effects of vaccination and treatment on the spread of HIV/AIDS. The objectives are (i) to derive conditions for the success of vaccination and treatment programs and (ii) to derive threshold conditions for the existence and stability of equilibria in terms of the effective reproduction number R. It is found, firstly, that the success of a vaccination and treatment program is achieved when R0t<R0, R0t<R0v and γeRVT(σ)<RUT(α), where R0t and R0v are respectively the reproduction numbers for populations consisting entirely of treated and vaccinated individuals, R0 is the basic reproduction number in the absence of any intervention, RUT(α) and RVT(σ) are respectively the reproduction numbers in the presence of a treatment (α) and a combination of vaccination and treatment (σ) strategies. Secondly, that if R<1, there exists a unique disease free equilibrium point which is locally asymptotically stable, while if R>1 there exists a unique locally asymptotically stable endemic equilibrium point, and that the two equilibrium points coalesce at R=1. Lastly, it is concluded heuristically that the stable disease free equilibrium point exists when the conditions R0t<R0, R0t<R0v and γeRVT(σ)<RUT(α) are satisfied.


2019 ◽  
Vol 1 (2) ◽  
pp. 125
Author(s):  
Syafruddin Side ◽  
Ahmad Zaki ◽  
Nurwahidah Sari

Abstrak. Artike lini adalah penelitian teori dan terapan. Artikelini bertujuan untuk membahas mengenai model matematika SIRS untuk penyebaran Demam Berdarah Dengue. Data yang digunakanadalah data sekunder jumlah penderita penyakit Demam Berdarah Dengue dari Side pada tahun 2014. Pembahasan di mulai dari membangun model matematika SIRS penyakit Demam Berdarah Dengue, menentukan eksistensi model SIRS menggunakan fungsi Lyapunov, penentuan titik ekuilibrium, kemudian mencari analisis kestabilan titik ekuilibrium menggunakan fungsi Lyapunov, menentukan nilai bilangan reproduksi dasar , membuat simulasi model, dan menginterpretasikannya. Dalam artikel ini diperoleh model matematika SIRS untuk penyakit Demam Berdarah Dengue, eksistensi model SIRS, dua titik ekuilibrium bebas penyakit dan endemik dari model SIRS, kestabilan global keseimbangan bebas penyakit dan endemik dari model SIRS dengan nilai bilangan reproduksi dasar , ini menunjukkan bahwa penyakit Demam Berdarah Dengue berstatus epidemik.Kata Kunci: Model Matematika, Penyebaran Penyakit, Demam Berdarah Dengue, Model  SIRS, Fungsi LyapunovAbstract. This paper is theorethical and applied research. This paper aims to discus about SIRS mathematical models for the spread of dengue fever. The data used is a secondary data about the number of people with dengue fever disease from Side (2014). The discussion start from constructing SIRS models of dengue fever disease, determining the existence of SIRS models using Lyapunov function, determining equilibrium point, then looking for stability analysis of equilibrium point using Lyapunov function, determining reproduction number , making models simulation, and interpreting it. In this paper, we obtained mathemathical models of SIRS for dengue fever disease, existence of SIRS models, disease-free and endemic equilibrium points of SIRS models, global stability of disease-free and endemic equilibrium of SIRS models with basic reproduction number , it shows that dengue fever disease is epidemic status. , This shows that Dengue Hemorrhagic Fever is an epidemic.Keyword: Mathematical Model, Spread of Disease, Dengue Fever, SIRS Model, Lyapunov Function


2021 ◽  
Vol 2 (2) ◽  
pp. 68-79
Author(s):  
Muhammad Manaqib ◽  
Irma Fauziah ◽  
Eti Hartati

This study developed a model for the spread of COVID-19 disease using the SIR model which was added by a health mask and quarantine for infected individuals. The population is divided into six subpopulations, namely the subpopulation susceptible without a health mask, susceptible using a health mask, infected without using a health mask, infected using a health mask, quarantine for infected individuals, and the subpopulation to recover. The results obtained two equilibrium points, namely the disease-free equilibrium point and the endemic equilibrium point, and the basic reproduction number (R0). The existence of a disease-free equilibrium point is unconditional, whereas an endemic equilibrium point exists if the basic reproduction number is more than one. Stability analysis of the local asymptotically stable disease-free equilibrium point when the basic reproduction number is less than one. Furthermore, numerical simulations are carried out to provide a geometric picture related to the results that have been analyzed. The results of numerical simulations support the results of the analysis obtained. Finally, the sensitivity analysis of the basic reproduction numbers carried out obtained four parameters that dominantly affect the basic reproduction number, namely the rate of contact of susceptible individuals with infection, the rate of health mask use, the rate of health mask release, and the rate of quarantine for infected individuals.


2021 ◽  
Vol 16 ◽  
pp. 1-9
Author(s):  
Joko Harianto

This article discusses modifications to the SEIL model that involve logistical growth. This model is used to describe the dynamics of the spread of tuberculosis disease in the population. The existence of the model's equilibrium points and its local stability depends on the basic reproduction number. If the basic reproduction number is less than unity, then there is one equilibrium point that is locally asymptotically stable. The equilibrium point is a disease-free equilibrium point. If the basic reproduction number ranges from one to three, then there are two equilibrium points. The two equilibrium points are disease-free equilibrium and endemic equilibrium points. Furthermore, for this case, the endemic equilibrium point is locally asymptotically stable.


CAUCHY ◽  
2021 ◽  
Vol 6 (4) ◽  
pp. 188-199
Author(s):  
Ummu Habibah

We had constructed mathematical model of HIV/AIDS with seven compartments. There were two different stages of infection and susceptible subpopulations. Two stages in infection subpopulation were an HIV-positive with consuming ARV such that this subpopulation can survive longer and an HIV-positive not consuming ARV.  The susceptible subpopulation was divided into two, uneducated and educated susceptible subpopulations.  The transmission coefficients from educated and uneducated subpopulations to infection stages were  where  ((  and ) (  and )) In this paper, we consider the case of  and  were zero.  We investigated local stability of the model solutions according to the basic reproduction number as a threshold of disease transmission. The disease-free and endemic equilibrium points were locally asymptotically stable when  and  respectively. To support the analytical results, numerical simulation was conducted.


2019 ◽  
Vol 16 (1) ◽  
pp. 107
Author(s):  
Willyam Daniel Sihotang ◽  
Ceria Clara Simbolon ◽  
July Hartiny ◽  
Desrinawati Tindaon ◽  
Lasker Pangarapan Sinaga

Measles is a contagious infectious disease caused by a virus and has the potential to cause an outbreak. Immunization and vaccination are carried out as an effort to prevent the spread of measles. This study aims to analyze and determine the stability of the SEIR model on the spread of measles with the influence of immunization and MR vaccines. The results obtained from model analysis, namely there are two disease free and endemic equilibrium points. If the conditions are met, the measles-free equilibrium point will be asymptotically stable and the measles endemic equilibrium point will be stable. Numerical solutions show a decrease in the rate of spread of measles due to the effect of immunization and the addition of MR vaccines.


2021 ◽  
Vol 4 (2) ◽  
pp. 106-124
Author(s):  
Raqqasyi Rahmatullah Musafir ◽  
Agus Suryanto ◽  
Isnani Darti

We discuss the dynamics of new COVID-19 epidemic model by considering asymptomatic infections and the policies such as quarantine, protection (adherence to health protocols), and vaccination. The proposed model contains nine subpopulations: susceptible (S), exposed (E), symptomatic infected (I), asymptomatic infected (A), recovered (R), death (D), protected (P), quarantined (Q), and vaccinated (V ). We first show the non-negativity and boundedness of solutions. The equilibrium points, basic reproduction number, and stability of equilibrium points, both locally and globally, are also investigated analytically. The proposed model has disease-free equilibrium point and endemic equilibrium point. The disease-free equilibrium point always exists and is globally asymptotically stable if basic reproduction number is less than one. The endemic equilibrium point exists uniquely and is globally asymptotically stable if the basic reproduction number is greater than one. These properties have been confirmed by numerical simulations using the fourth order Runge-Kutta method. Numerical simulations show that the disease transmission rate of asymptomatic infection, quarantine rates, protection rate, and vaccination rates affect the basic reproduction number and hence also influence the stability of equilibrium points.


2020 ◽  
Vol 1 (2) ◽  
pp. 57-64
Author(s):  
Sitty Oriza Sativa Putri Ahaya ◽  
Emli Rahmi ◽  
Nurwan Nurwan

In this article, we analyze the dynamics of measles transmission model with vaccination via an SVEIR epidemic model. The total population is divided into five compartments, namely the Susceptible, Vaccinated, Exposed, Infected, and Recovered populations. Firstly, we determine the equilibrium points and their local asymptotically stability properties presented by the basic reproduction number R0. It is found that the disease free equilibrium point is locally asymptotically stable if satisfies R01 and the endemic equilibrium point is locally asymptotically stable when R01. We also show the existence of forward bifurcation driven by some parameters that influence the basic reproduction number R0 i.e., the infection rate α or proportion of vaccinated individuals θ. Lastly, some numerical simulations are performed to support our analytical results.


2020 ◽  
Vol 14 (2) ◽  
pp. 297-304
Author(s):  
Joko Harianto ◽  
Titik Suparwati ◽  
Inda Puspita Sari

Abstrak Artikel ini termasuk dalam ruang lingkup matematika epidemiologi. Tujuan ditulisnya artikel ini untuk mendeskripsikan dinamika lokal penyebaran suatu penyakit dengan beberapa asumsi yang diberikan. Dalam pembahasan, dianalisis titik ekuilibrium model epidemi SVIR dengan adanya imigrasi pada kompartemen vaksinasi. Dengan langkah pertama, model SVIR diformulasikan, kemudian titik ekuilibriumnya ditentukan, selanjutnya, bilangan reproduksi dasar ditentukan. Pada akhirnya, kestabilan titik ekuilibirum yang bergantung pada bilangan reproduksi dasar ditentukan secara eksplisit. Hasilnya adalah jika bilangan reproduksi dasar kurang dari satu maka terdapat satu titik ekuilbirum dan titik ekuilbrium tersebut stabil asimtotik lokal. Hal ini berarti bahwa dalam kondisi tersebut penyakit akan cenderung menghilang dalam populasi. Sebaliknya, jika bilangan reproduksi dasar lebih dari satu, maka terdapat dua titik ekuilibrium. Dalam kondisi ini, titik ekuilibrium endemik stabil asimtotik lokal dan titik ekuilibrium bebas penyakit tidak stabil. Hal ini berarti bahwa dalam kondisi tersebut penyakit akan tetap ada dalam populasi. Kata Kunci : Model SVIR, Stabil Asimtotik Lokal Abstract This article is included in the scope of mathematical epidemiology. The purpose of this article is to describe the dynamics of the spread of disease with some assumptions given. In this paper, we present an epidemic SVIR model with the presence of immigration in the vaccine compartment. First, we formulate the SVIR model, then the equilibrium point is determined, furthermore, the basic reproduction number is determined. In the end, the stability of the equilibrium point is determined depending on the number of basic reproduction. The result is that if the basic reproduction number is less than one then there is a unique equilibrium point and the equilibrium point is locally asymptotically stable. This means that in those conditions the disease will tend to disappear in the population. Conversely, if the basic reproduction number is more than one, then there are two equilibrium points. The endemic equilibrium point is locally asymptotically stable and the disease-free equilibrium point is unstable. This means that in those conditions the disease will remain in the population. Keywords: SVIR Model, Locally Asymptotically stable.


Sign in / Sign up

Export Citation Format

Share Document