scholarly journals Information Technology in Industrial Applications. III. AI, Petri Net, & Genetic Algorithm Application Technology in Industrial Systems. 2. Petri Nets Application Technology in Industrial Systems.

1993 ◽  
Vol 113 (12) ◽  
pp. 1359-1360
Author(s):  
Sadatoshi Kumagai
Electronics ◽  
2018 ◽  
Vol 7 (12) ◽  
pp. 448
Author(s):  
José-Inácio Rocha ◽  
Octávio Páscoa Dias ◽  
Luís Gomes

Whereas most of the work that analyses Synchronous Dataflow (SDF) stays in the dataflow framework, this work pushes its analysis into another framework level, thereby addressing issues that are not well addressed or are even unexplored in SDF. In this manner, the paper proposes a model-driven engineering (MDE) method, combining Synchronous Dataflow (SDF) and Petri nets, to highlight and reinforce their interoperability in digital signal processing applications, cyber-physical systems, or industrial applications. Improvements regarding the settlement and exploitation of the initial conditions associated with SDF are demonstrated; this issue is crucial for every cyber-physical system, since a system’s initial conditions are crucial to ensuring the system’s liveness. The improvements outlined in this work exploit an innovating mapping in the Place/Transition (P/T) Petri net domain that is intended to reduce and predict the total amount of initial data in SDF channels. The relevance of the firing semantics engaged with the equivalent Petri net model is discussed. This paper proposes a new approach to estimate whether an SDF has a static schedule by performing simulation and property verification of the equivalent-based P/T Petri net system achieved, framed by a Petri net invariant analysis and based on the stubborn set method of Petri nets. In this way, this new approach will allow mitigating the state explosion problem. Finally, a strategy is applied to two case studies to discover all the elementary circuits (static schedules) associated with the generated model’s state-space.


1983 ◽  
Vol 6 (3-4) ◽  
pp. 333-374
Author(s):  
H.J.M. Goeman ◽  
L.P.J. Groenewegen ◽  
H.C.M. Kleijn ◽  
G. Rozenberg

This paper continues the investigation froll1 [Goeman et al.] concerning the use of sets of places of a Petri net as additional (to input places) constraints for granting concession. Now interpretations of more general constraints are considered and expressed as Boolean expressions. This gives rise to various classes of constrained Petri nets. These are compared in the language theoretical framework introduced in [Goeman et al.]. An upperbound for the language defining power is found in the class of context-free programmed languages.


Energies ◽  
2021 ◽  
Vol 14 (11) ◽  
pp. 3060
Author(s):  
Gustavo Navarro ◽  
Jorge Torres ◽  
Marcos Blanco ◽  
Jorge Nájera ◽  
Miguel Santos-Herran ◽  
...  

Energy storage systems (ESS) are becoming essential as a solution for troublesome industrial systems. This study focuses on the application of a type of ESS, a high-power technology known in the literature as supercapacitors or electric double layer capacitors (EDLC). This technology has had a huge impact during the last decade on research related to the electric traction drives, renewable sources and powergrids. Related to this aspect, this paper summarizes the most relevant scientific publications in the last five years that study the use of supercapacitor technology (SCs) in electric traction applications (drives for rail vehicles and drives for road vehicles), generation systems for renewable energy (wind, solar and wave energy), and connection systems to the electric grid (voltage and frequency regulation and microgrids). The technology based on EDLC and the practical aspects that must be taken into account in the op-eration of these systems in industrial applications are briefly described. For each of the aforementioned applications, it is described how the problems are solved by using the energy storage technology, drawing the solutions proposed by different authors. Special attention is paid to the control strategies when combining SCs with other technologies, such as batteries. As a summary, some conclusions are collected drawn from the publications analyzed, evaluating the aspects in which it is necessary to conduct further research in order to facilitate the integration of EDLC technology.


1991 ◽  
Vol 14 (4) ◽  
pp. 477-491
Author(s):  
Waldemar Korczynski

In this paper an algebraic characterization of a class of Petri nets is given. The nets are characterized by a kind of algebras, which can be considered as a generalization of the concept of the case graph of a (marked) Petri net.


2013 ◽  
Vol 859 ◽  
pp. 577-581
Author(s):  
Hui Xia Li ◽  
Yun Can Xue ◽  
Jian Qiang Zhang ◽  
Qi Wen Yang

To overcome the shortcomings of precocity and being easily trapped into local optimum of the standard quantum genetic algorithm (QGA) , Information Technology in An Improved Quantum Genetic Algorithm based on dynamic adjustment of the quantum rotation angle of quantum gate (DAAQGA) was proposed. Mutation operation using the quantum not-gate is also introduced to enhance the diversity of population. Chaos search are also introduced into the modified algorithm to improve the search accuracy. Simulation experiments have been carried and the results show that the improved algorithm has excellent performance both in the preventing premature ability and in the search accuracy.


2008 ◽  
Vol 44-46 ◽  
pp. 537-544
Author(s):  
Shi Yi Bao ◽  
Jian Xin Zhu ◽  
Li J. Wang ◽  
Ning Jiang ◽  
Zeng Liang Gao

The quantitative analysis of “domino” effects is one of the main aspects of hazard assessment in chemical industrial park. This paper demonstrates the application of heterogeneous stochastic Petri net modeling techniques to the quantitative assessment of the probabilities of domino effects of major accidents in chemical industrial park. First, five events are included in the domino effect models of major accidents: pool fire, explosion, boiling liquid expanding vapour explosion (BLEVE) giving rise to a fragment, jet fire and delayed explosion of a vapour cloud. Then, the domino effect models are converted into Generalized Stochastic Petri net (GSPN) in which the probability of the domino effect is calculated automatically. The Stochastic Petri nets’ models, which are state-space based ones, increase the modeling flexibility but create the state-space explosion problems. Finally, in order to alleviate the state-space explosion problems of GSPN models, this paper employs Stochastic Wellformed Net (SWN), a particular class of High-Level (colored) SPN. To conduct a case study on a chemical industrial park, the probability of domino effects of major accidents is calculated by using the GSPN model and SWN model in this paper.


Sign in / Sign up

Export Citation Format

Share Document