scholarly journals Determination Method for Optimal Sending Voltage Profile in Distribution System with Distributed Generators

2005 ◽  
Vol 125 (9) ◽  
pp. 846-854 ◽  
Author(s):  
Yasuhiro Hayashi ◽  
Junya Matsuki ◽  
Ryoji Suzuki ◽  
Eiji Muto
Author(s):  
Ali Aranizadeh ◽  
Iman Niazazari ◽  
Mirpouya Mirmozaffari

The optimal sizing and placement of distributed generators have recently drawn a considerable attention to itself. This paper proposes an evolutionary cuckoo optimization algorithm (COA) for optimal placement of distributed generation (DG) in a distribution system. The optimal DG placement problem is formulated as a cost function of network losses, voltage profile, and DG expenses. The proposed method is validated on a 13-bus distribution system. The results show that any variation in the parameter’s weight in the objective function leads to a significant change in the prediction of the DG’s location and capacity.  


Energies ◽  
2021 ◽  
Vol 14 (6) ◽  
pp. 1744
Author(s):  
Mohsin Shahzad ◽  
Waseem Akram ◽  
Muhammad Arif ◽  
Uzair Khan ◽  
Barkat Ullah

Increasing the unplanned penetration of Distributed Generators (DGs) has spurred active and reactive power losses in the distribution system. This article suggests using a novel Strawberry Plant Propagation Algorithm (SPPA) for planning the placement of the DGs with the aim of reducing the network (active) power losses and improving the overall voltage profile. The proposed method (SPPA) has been tested on 33 and 69 node radial systems in MATLAB. A cost analysis was also performed and compared with other contemporary methods. The results for the considered variables show the significance of the proposed method in comparison to various other counterparts, including the Mine Blast Algorithm and Particle Swarm Optimization.


Author(s):  
Mehrnoosh Vatani

<p>Adding distributed Generators (DGs) to the passive electrical networks causes major changes in the specifications of the network including voltage profile, short circuit level and transient stability. In this paper, the effect of DGs switching transient in network is considered. The DGs location are changed in different buses. Two types of DGs are used (i.e. wind and synchronous DGs). Switching transient signals are time variant. It has a continuous spectrum of frequency. Fast Fourier and Wavelet transform methods are used for transient analysis. The proposed method is applied to IEEE-13 Bus distribution system.</p>


Author(s):  
Suresh Kumar Sudabattula ◽  
Kowsalya Muniswamy ◽  
Velamuri Suresh

Performance of a distribution system is negatively affected with the usage of non linear loads and rapid growth in electricity demand. It is possible to improve the voltage profile and reduce the power loss in a distribution system, by integrating distributed generators (DGs) and shunt capacitors (SCs). Identifying the optimal location and capacity of DGs and SCsare the crucial factors affecting the DS performance. This paper aims to reduce the power losses in the DS and facilitates an improvement in voltage profile with optimal allocation of DGs and SCs. First, the vulnerable nodes for placement of DGs and SCs are identified by loss sensitivity factor (LSF) technique. Next, the sizes of SCs and DGs at these corresponding locations are determined using a recently developed swarm intelligent technique dragonfly algorithm (DFA). Various constraints of the DS are included to estimate the objective function. To analyze the performance of the proposed method it is investigated on IEEE 69 bus radial distribution systems (RDS) considering constant power load at different load levels. Several case studies are conducted to analyze the performance of the DS. Three different load levels at different power factors are considered in the study. Initially few case studies are performed by considering single DG and single SC. Further the analyses are extended with multiple DGs and SCs. Finally, the proposed method is compared with other prominent methods accessible in the literature. It can be inferred from the analyses that simultaneous allocation of DGs and SCs in DS improves the overall performance of the system.


2021 ◽  
Vol 264 ◽  
pp. 04084
Author(s):  
Ikrom Khonturaev ◽  
Mansur Khasanov ◽  
Muhiddin Anarbaev ◽  
Abror Kurbanov ◽  
Anvar Suyarov ◽  
...  

In recent years the use of renewable energy sources (RES) by many power grid companies worldwide has increased significantly. The trend towards RES use is mainly due to environmental issues and rising fuel prices associated with conventional electricity generation. This paper introduces a hybrid approach to find the optimal location and size of distributed generations (DG) in the radial distribution system (RDS). The proposed approach is based on the atom search optimization (ASO) technique to calculate the optimal allocation of DGs and power loss sensitivity (PLS) index to obtain the best buses for DGs installation in RDS. The presented approach is applied to IEEE 33-bus RDS to increase voltage profile and minimize the power losses. The results obtained prove that the developed approach can be highly effective in integrating DG into RDS compared to many other methods in the literature.


Energies ◽  
2018 ◽  
Vol 11 (12) ◽  
pp. 3351 ◽  
Author(s):  
Mirna Abd El-salam ◽  
Eman Beshr ◽  
Magdy Eteiba

Transformations are taking place within the distribution systems to cope with the congestions and reliability concerns. This paper presents a new technique to efficiently minimize power losses within the distribution system by optimally sizing and placing distributed generators (DGs) while considering network reconfiguration. The proposed technique is a hybridization of two metaheuristic-based algorithms: Grey Wolf Optimizer (GWO) and Particle Swarm Optimizer (PSO), which solve the network reconfiguration problem by optimally installing different DG types (conventional and renewable-based). Case studies carried out showed the proposed hybrid technique outperformed each algorithm operating individually regarding both voltage profile and reduction in system losses. Case studies are carried to measure and compare the performance of the proposed technique on three different works: IEEE 33-bus, IEEE 69-bus radial distribution system, and an actual 78-bus distribution system located at Cairo, Egypt. The integration of renewable energy with the distribution network, such as photovoltaic (PV) arrays, is recommended since Cairo enjoys an excellent actual record of irradiance according to the PV map of Egypt.


Day by day the need for electrical power is increasing due to the continuous growth and development in the social and economical status of the society. By and large in conventional electrical power system network, power flows from generating stations through transmission and distribution system to the end user. The demand for electrical power at the distribution systems is also increasing continuously. In order to meet the increase in the demand for the electrical power, it is required to increase the existing capacities of the generation and transmission & distribution system that involves lot of money and is a time consuming process. The best solution for this problem of increase in load demand is perfectly met with electric power generating units of smaller capacity which are going to be installed locally in the distribution system and are termed as “Distributed Generators (DGs)”. DGs not only supplies electrical power that meets the increase in load demand but also reduces the losses, improves the voltage profile and reliability of the system. To get maximum of these benefits, DGs are to be installed at its best optimal locations and are to be operated at its optimal generating capacities. In this work an algorithm based on MBAT is proposed to find the optimal locations and sizes of the DG units by considering the minimization of multiple objective functions like minimization of real power loss, cost function and total voltage deviation. The proposed algorithm is tested on IEEE-33 radial distribution systems and results are presented.


To meet the increasing real & reactive power demand of a distribution system (DS), it is essential to allocate the Distributed Generators (DGs) and Shunt capacitors (SCs) optimally. In this article, multiple DGs and SCs are allocated simultaneously in the DS aiming minimal power loss (PL), improved voltage stability index (VSI) and voltage profile of the system. A combined approach considering loss sensitivity factor (LSF) and political optimization algorithm (POA) is proposed to solve the allocation and sizing of DGs and SCs. The analysis is performed on an IEEE 33 bus system considering 9 different scenarios and results are compared with other Meta heuristic techniques. The analysis is extended for a 24 hour case study to prove the efficacy of the proposed combined approach. From all the performed simulations it can be observed that the combined approach helps in minimizing power loss and improving voltage profile and VSI for dynamic load variations effectively.


Sign in / Sign up

Export Citation Format

Share Document