Numerical Studies on Behavior of Lorentz-Force-Applied Boundary Layer in Supersonic Flow

2009 ◽  
Vol 129 (6) ◽  
pp. 831-839
Author(s):  
Keisuke Udagawa ◽  
Sadatake Tomioka ◽  
Hiroyuki Yamasaki
2009 ◽  
Vol 129 (2) ◽  
pp. 361-368
Author(s):  
Keisuke Udagawa ◽  
Shinya Saito ◽  
Kenji Kawaguchi ◽  
Sadatake Tomioka ◽  
Hiroyuki Yamasaki

2010 ◽  
Vol 40 (3) ◽  
pp. 309-319 ◽  
Author(s):  
V. N. Brazhko ◽  
A. V. Vaganov ◽  
N. A. Kovaleva ◽  
N. P. Kolina ◽  
I. I. Lipatov

1990 ◽  
Vol 216 ◽  
pp. 255-284 ◽  
Author(s):  
C. J. Lee ◽  
H. K. Cheng

Global interaction of the boundary layer separating from an obstacle with resulting open/closed wakes is studied for a thin airfoil in a steady flow. Replacing the Kutta condition of the classical theory is the breakaway criterion of the laminar triple-deck interaction (Sychev 1972; Smith 1977), which, together with the assumption of a uniform wake/eddy pressure, leads to a nonlinear equation system for the breakaway location and wake shape. The solutions depend on a Reynolds numberReand an airfoil thickness ratio or incidence τ and, in the domain$Re^{\frac{1}{16}}\tau = O(1)$considered, the separation locations are found to be far removed from the classical Brillouin–Villat point for the breakaway from a smooth shape. Bifurcations of the steady-state solution are found among examples of symmetrical and asymmetrical flows, allowing open and closed wakes, as well as symmetry breaking in an otherwise symmetrical flow. Accordingly, the influence of thickness and incidence, as well as Reynolds number is critical in the vicinity of branch points and cut-off points where steady-state solutions can/must change branches/types. The study suggests a correspondence of this bifurcation feature with the lift hysteresis and other aerodynamic anomalies observed from wind-tunnel and numerical studies in subcritical and high-subcriticalReflows.


1952 ◽  
Vol 19 (2) ◽  
pp. 185-194
Author(s):  
J. Kaye ◽  
T. Y. Toong ◽  
R. H. Shoulberg

Abstract The first part of a program to obtain reliable data on the rate of heat transfer to air moving at supersonic speeds in a tube has been devoted to measurements made on adiabatic supersonic flow of air in a tube. The details of these measurements have been described in a previous paper. The calculated quantities such as the local apparent friction coefficient, recovery factor, Mach number, and so forth, were obtained from the simple one-dimensional flow model for which the properties of the stream are uniform at any section, and boundary-layer effects are ignored. The analysis of some of the same data given in the previous paper is undertaken here with the aid of a simplified two-dimensional flow model. The supersonic flow in the tube is divided into a supersonic core of variable mass with the fluid remaining in the core undergoing a reversible adiabatic change of state, and a laminar boundary layer of variable mass. The compressible laminar boundary layer increases in thickness in the direction of flow, and then undergoes a transition to a turbulent boundary layer. The two-dimensional flow model is limited here to the region where a laminar boundary layer appears to be present in the entrance region of the tube. The results of the analysis based on the two-dimensional flow model indicate that where the flow in the tube boundary layer appears to be laminar, the measured pressures and temperatures in the tube for adiabatic supersonic flow of air could have been predicted, with sufficient accuracy for engineering problems, from measured data for supersonic flow of air over a flat plate with a laminar boundary layer, and with zero pressure gradient.


2000 ◽  
Vol 12 (3) ◽  
pp. 631-649 ◽  
Author(s):  
Timothy W. Berger ◽  
John Kim ◽  
Changhoon Lee ◽  
Junwoo Lim

Sign in / Sign up

Export Citation Format

Share Document