An airfoil theory of bifurcating laminar separation from thin obstacles

1990 ◽  
Vol 216 ◽  
pp. 255-284 ◽  
Author(s):  
C. J. Lee ◽  
H. K. Cheng

Global interaction of the boundary layer separating from an obstacle with resulting open/closed wakes is studied for a thin airfoil in a steady flow. Replacing the Kutta condition of the classical theory is the breakaway criterion of the laminar triple-deck interaction (Sychev 1972; Smith 1977), which, together with the assumption of a uniform wake/eddy pressure, leads to a nonlinear equation system for the breakaway location and wake shape. The solutions depend on a Reynolds numberReand an airfoil thickness ratio or incidence τ and, in the domain$Re^{\frac{1}{16}}\tau = O(1)$considered, the separation locations are found to be far removed from the classical Brillouin–Villat point for the breakaway from a smooth shape. Bifurcations of the steady-state solution are found among examples of symmetrical and asymmetrical flows, allowing open and closed wakes, as well as symmetry breaking in an otherwise symmetrical flow. Accordingly, the influence of thickness and incidence, as well as Reynolds number is critical in the vicinity of branch points and cut-off points where steady-state solutions can/must change branches/types. The study suggests a correspondence of this bifurcation feature with the lift hysteresis and other aerodynamic anomalies observed from wind-tunnel and numerical studies in subcritical and high-subcriticalReflows.

Author(s):  
Michael J. Collison ◽  
Peter X. L. Harley ◽  
Domenico di Cugno

Low speed, small scale turbomachinery operates at low Reynolds number with transition phenomena occurring. In small consumer product applications, high efficiency and low noise are key performance metrics. Transition behaviour will partly determine the state of the boundary layer at the trailing edge; whether it is laminar, turbulent or separated impacts aerodynamic and acoustic performance. This study aimed to evaluate a commercially available CFD transition model on a low Reynolds number Eppler E387 airfoil and identify whether it was able to correctly model the boundary layer transition, and at what expense. CFD was carried out utilising the ANSYS Shear Stress Transport (SST) k-ω γ-Reθ transition model. The CFD progressed from 2D in Fluent v150, through to single cell thickness 3D (pseudo 2D) in CFX v172. An Eppler E387 low Reynolds number airfoil, for which experimental data was readily available from literature at Re = 200,000 was used as the validation case for the CFD, with results computed at numerous incidence angles and mesh densities. Additionally, experimental surface oil flow visualisation was undertaken in a wind tunnel using a scaled E387 airfoil for the zero incidence case at Re = 50,000. The flow visualisation exhibited the expected key features of transition in the breakdown of the boundary layer from laminar to turbulent, and was used as a validation case for the CFD transition model. The comparison between the results from the CFD transition model and the experimental data from literature suggested varying levels of agreement based on the mesh density and CFD solver in the starting location of the laminar separation bubble, with higher disparity for the position of the reattachment point. Whether 2D or 3D, the prediction accuracy was seen to worsen at high incidence angles. Finally, the location of the laminar separation bubble between CFD and oil flow visualisation had good agreement and a set of guidelines on the mesh parameters which can be applied to low Reynolds number turbomachinery simulations was determined.


2018 ◽  
Vol 140 (7) ◽  
Author(s):  
Paul Ziadé ◽  
Mark A. Feero ◽  
Philippe Lavoie ◽  
Pierre E. Sullivan

The shear layer development for a NACA 0025 airfoil at a low Reynolds number was investigated experimentally and numerically using large eddy simulation (LES). Two angles of attack (AOAs) were considered: 5 deg and 12 deg. Experiments and numerics confirm that two flow regimes are present. The first regime, present for an angle-of-attack of 5 deg, exhibits boundary layer reattachment with formation of a laminar separation bubble. The second regime consists of boundary layer separation without reattachment. Linear stability analysis (LSA) of mean velocity profiles is shown to provide adequate agreement between measured and computed growth rates. The stability equations exhibit significant sensitivity to variations in the base flow. This highlights that caution must be applied when experimental or computational uncertainties are present, particularly when performing comparisons. LSA suggests that the first regime is characterized by high frequency instabilities with low spatial growth, whereas the second regime experiences low frequency instabilities with more rapid growth. Spectral analysis confirms the dominance of a central frequency in the laminar separation region of the shear layer, and the importance of nonlinear interactions with harmonics in the transition process.


2013 ◽  
Vol 748 ◽  
pp. 432-436
Author(s):  
Xiao Zhou Feng ◽  
Mei Hua Wei ◽  
Yan Ling Li

In this paper, the positive steady-state solutions of a strongly coupled partial differential equation system with Holling II functional response is studied. The existence for positive steady-state solutions of system is established by calculating the fixed point index in cone.


1980 ◽  
Vol 102 (1) ◽  
pp. 5-12 ◽  
Author(s):  
A. Scha¨ffler

The general effect of Reynolds Number on axial flow compressors operating over a sufficiently wide range is described and illustrated by experimental data for four multistage axial compressors. The wide operating range of military aircraft engines leads in the back stages of high pressure ratio compression systems to three distinctly different regimes of operation, characterized by the boundary layer conditions of the cascade flow: • laminar separation, • turbulent attached flow with hydraulically smooth blade surface, • turbulent attached flow with hydraulically rough blade surface. Two “critical” Reynolds Numbers are defined, the “lower critical Reynolds Number” below which laminar separation occurs with a definite steepening of the efficiency/Reynolds Number relation and an “upper critical Reynolds Number” above which the blade surface behaves hydraulically rough, resulting in an efficiency independant of Reynolds Number. The permissible blade surface roughness for hydraulically smooth boundary layer conditions in modern high pressure ratio compression systems is derived from experimental data achieved with blades produced by grinding, electrochemical machining and forging. A correlation between the effect of technical roughness and sand type roughness is given. The potential loss of efficiency in the back end of compression systems due to excessive blade roughness is derived from experimental results. The repeatedly experienced different sensitivity of front and back stages towards laminar separation in the low Reynolds Number regime is explained by boundary layer calculations as a Mach Number effect on blade pressure distribution, i.e. transonic versus subsonic flow.


2016 ◽  
Vol 801 ◽  
pp. 289-321 ◽  
Author(s):  
Wolfgang Balzer ◽  
H. F. Fasel

The aerodynamic performance of lifting surfaces operating at low Reynolds number conditions is impaired by laminar separation. In most cases, transition to turbulence occurs in the separated shear layer as a result of a series of strong hydrodynamic instability mechanisms. Although the understanding of these mechanisms has been significantly advanced over the past decades, key questions remain unanswered about the influence of external factors such as free-stream turbulence (FST) and others on transition and separation. The present study is driven by the need for more accurate predictions of separation and transition phenomena in ‘real world’ applications, where elevated levels of FST can play a significant role (e.g. turbomachinery). Numerical investigations have become an integral part in the effort to enhance our understanding of the intricate interactions between separation and transition. Due to the development of advanced numerical methods and the increase in the performance of supercomputers with parallel architecture, it has become feasible for low Reynolds number application ($O(10^{5})$) to carry out direct numerical simulations (DNS) such that all relevant spatial and temporal scales are resolved without the use of turbulence modelling. Because the employed high-order accurate DNS are characterized by very low levels of background noise, they lend themselves to transition research where the amplification of small disturbances, sometimes even growing from numerical round-off, can be examined in great detail. When comparing results from DNS and experiment, however, it is beneficial, if not necessary, to increase the background disturbance levels in the DNS to levels that are typical for the experiment. For the current work, a numerical model that emulates a realistic free-stream turbulent environment was adapted and implemented into an existing Navier–Stokes code based on a vorticity–velocity formulation. The role FST plays in the transition process was then investigated for a laminar separation bubble forming on a flat plate. FST was shown to cause the formation of the well-known Klebanoff mode that is represented by streamwise-elongated streaks inside the boundary layer. Increasing the FST levels led to accelerated transition, a reduction in bubble size and better agreement with the experiments. Moreover, the stage of linear disturbance growth due to the inviscid shear-layer instability was found to not be ‘bypassed’.


1981 ◽  
Vol 108 ◽  
pp. 227-240 ◽  
Author(s):  
M. Holodniok ◽  
M. Kubí[cscr ]ek ◽  
V. Hlavá[cscr ]ek

A numerical investigation of the problem of rotating disks is made using the Newton-Raphson and continuation methods. The numerical analysis of the problem was performed for a sequence of values of the Reynolds number R and the ratio of angular velocities of both disks s. It was shown that for higher values of the Reynolds number it is necessary to use a large number of grid points. Continuation of the solution with respect to the parameter s indicated that a number of branches may exist. A detailed discussion for three selected values of s (s = -1, s = 0, s = 1) is presented together with a detailed comparison of our calculations with results already published in the literature.


2000 ◽  
Vol 23 (4) ◽  
pp. 261-270 ◽  
Author(s):  
B. Shi

An open problem given by Kocic and Ladas in 1993 is generalized and considered. A sufficient condition is obtained for each solution to tend to the positive steady-state solution of the systems of nonlinear Volterra difference equations of population models with diffusion and infinite delays by using the method of lower and upper solutions and monotone iterative techniques.


1999 ◽  
Vol 66 (1) ◽  
pp. 109-116 ◽  
Author(s):  
J. A. Pelesko

The behavior of a one-dimensional thermoelastic rod is modeled and analyzed. The rod is held fixed and at constant temperature at one end, while at the other end it is free to separate from or make contact with a rigid wall. At this free end a pressure and gap-dependent thermal boundary condition is imposed which couples the thermal and elastic problems. Such systems have previously been shown to undergo a bifurcation from a unique linearly stable steady-state solution to multiple steady-state solutions with alternating stability. Here, the system is studied using a two-timing or multiple-scale singular perturbation technique. In this manner, the analysis is extended into the nonlinear regime and dynamic information about the history dependence and temporal evolution of the solution is obtained.


1971 ◽  
Vol 43 ◽  
pp. 725-736
Author(s):  
Y. Nakagawa

Models relevant to numerical studies of the solar cycle are reviewed briefly with discussions of pertinent physical mechanisms. It is suggested that the observed surface activities are secondary in nature and an example of possible non-axisymmetric steady state solutions is given, together with the results of preliminary numerical computations.


2018 ◽  
Vol 22 (4) ◽  
pp. 2359-2375 ◽  
Author(s):  
Chao-Chih Lin ◽  
Ya-Chi Chang ◽  
Hund-Der Yeh

Abstract. Understanding the head distribution in aquifers is crucial for the evaluation of groundwater resources. This article develops a model for describing flow induced by pumping in an L-shaped fluvial aquifer bounded by impermeable bedrocks and two nearly fully penetrating streams. A similar scenario for numerical studies was reported in Kihm et al. (2007). The water level of the streams is assumed to be linearly varying with distance. The aquifer is divided into two subregions and the continuity conditions of the hydraulic head and flux are imposed at the interface of the subregions. The steady-state solution describing the head distribution for the model without pumping is first developed by the method of separation of variables. The transient solution for the head distribution induced by pumping is then derived based on the steady-state solution as initial condition and the methods of finite Fourier transform and Laplace transform. Moreover, the solution for stream depletion rate (SDR) from each of the two streams is also developed based on the head solution and Darcy's law. Both head and SDR solutions in the real time domain are obtained by a numerical inversion scheme called the Stehfest algorithm. The software MODFLOW is chosen to compare with the proposed head solution for the L-shaped aquifer. The steady-state and transient head distributions within the L-shaped aquifer predicted by the present solution are compared with the numerical simulations and measurement data presented in Kihm et al. (2007).


Sign in / Sign up

Export Citation Format

Share Document