H∞ Control Approach to Reduction of Energy Capacity of Energy Storage Systems

2017 ◽  
Vol 137 (8) ◽  
pp. 596-597
Author(s):  
Kenta Koiwa ◽  
Kenta Suzuki ◽  
Kang-Zhi Liu ◽  
Tadanao Zanma ◽  
Masashi Wakaiki ◽  
...  
Electronics ◽  
2021 ◽  
Vol 10 (14) ◽  
pp. 1666
Author(s):  
Abdellatif Elmouatamid ◽  
Radouane Ouladsine ◽  
Mohamed Bakhouya ◽  
Najib El kamoun ◽  
Khalid Zine-Dine

The integration of renewable energy sources (RES) was amplified, during the past decades, in order to tackle the challenges related to energy demands and CO2 increases. Recently, many initiatives have been taken by promoting the deployment and the usage of micro-grids (MG) in buildings, as decentralized systems, for energy production. However, the variable nature of RESs and the limited size of energy storage systems require the deployment of adaptive control strategies for efficient energy balance. In this paper, a generalized predictive control (GPC) strategy is introduced for energy management (EM) in MG systems. Its main objective is to efficiently connect the electricity generators and consumers in order to predict the most suitable actions for energy flow management. In fact, based on energy production and consumption profiles as well as the availability of energy storage systems, the proposed EM will be able to select the best suitable energy source for supplying the building’s loads. It will efficiently manage the usage of energy storage and the utility grid while maximizing RESs power generation. Simulations have been conducted, using real-sitting scenarios, and results are presented to validate the proposed predictive control approach by showing its effectiveness for MG systems control.


Author(s):  
Vaishnavi Kale ◽  
Marc Secanell

Abstract Flywheel energy storage systems (FESS) are an excellent short duration grid energy storage solution; however, their cost and energy storage capacity are typical barriers to their widespread commercialization. FESS can be designed by optimizing the shape of the flywheel rotor, choice of rotor material, operating speed and rotor radius. This study optimizes the flywheel rotor shape at various operating speeds and outer radii. It is found that the energy capacity of the rotor can be improved by choosing an ideal combination of operating speed and rotor radius. Our earlier work showed that including the cost of the FESS as an optimization objective could significantly alter the FESS design [1]. Therefore, the cost effectiveness of the FESS is also studied by comparing rotors made from different materials on an energy-per-cost basis, while the cost ratio of the materials is varied.


2021 ◽  
Author(s):  
Marino Calefati ◽  
Silvia Proia ◽  
Paolo Scarabaggio ◽  
Raffaele Carli ◽  
Mariagrazia Dotoli

Sign in / Sign up

Export Citation Format

Share Document