scholarly journals On inequalities of Kolmogorov type for fractional derivatives of functions defined on the real domain

2021 ◽  
Vol 16 ◽  
pp. 28
Author(s):  
V.F. Babenko ◽  
M.S. Churilova

We obtain new inequalities that generalize known result of Geisberg, which was obtained for fractional Marchaud derivatives, to the case of higher derivatives, at that the fractional derivative is a Riesz one. The inequality with second higher derivative is sharp.

2021 ◽  
Vol 15 ◽  
pp. 26
Author(s):  
V.F. Babenko ◽  
M.S. Churilova

We obtain new inequalities for fractional Marchaud derivatives of functions defined on the whole real domain, in integral metric ($1 \leqslant p < \infty$); for $p = 1$ we establish the sharpness of obtained inequalities.


2016 ◽  
pp. 3973-3982
Author(s):  
V. R. Lakshmi Gorty

The fractional integrals of Bessel-type Fractional Integrals from left-sided and right-sided integrals of fractional order is established on finite and infinite interval of the real-line, half axis and real axis. The Bessel-type fractional derivatives are also established. The properties of Fractional derivatives and integrals are studied. The fractional derivatives of Bessel-type of fractional order on finite of the real-line are studied by graphical representation. Results are direct output of the computer algebra system coded from MATLAB R2011b.


Electronics ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 475
Author(s):  
Ewa Piotrowska ◽  
Krzysztof Rogowski

The paper is devoted to the theoretical and experimental analysis of an electric circuit consisting of two elements that are described by fractional derivatives of different orders. These elements are designed and performed as RC ladders with properly selected values of resistances and capacitances. Different orders of differentiation lead to the state-space system model, in which each state variable has a different order of fractional derivative. Solutions for such models are presented for three cases of derivative operators: Classical (first-order differentiation), Caputo definition, and Conformable Fractional Derivative (CFD). Using theoretical models, the step responses of the fractional electrical circuit were computed and compared with the measurements of a real electrical system.


2013 ◽  
Vol 16 (4) ◽  
Author(s):  
Danijela Rajter-Ćirić ◽  
Mirjana Stojanović

AbstractWe consider fractional derivatives of a Colombeau generalized stochastic process G defined on ℝn. We first introduce the Caputo fractional derivative of a one-dimensional Colombeau generalized stochastic process and then generalize the procedure to the Caputo partial fractional derivatives of a multidimensional Colombeau generalized stochastic process. To do so, the Colombeau generalized stochastic process G has to have a compact support. We prove that an arbitrary Caputo partial fractional derivative of a compactly supported Colombeau generalized stochastic process is a Colombeau generalized stochastic process itself, but not necessarily with a compact support.


2013 ◽  
Vol 2013 ◽  
pp. 1-8 ◽  
Author(s):  
Abdon Atangana ◽  
Aydin Secer

The purpose of this note is to present the different fractional order derivatives definition that are commonly used in the literature on one hand and to present a table of fractional order derivatives of some functions in Riemann-Liouville sense On other the hand. We present some advantages and disadvantages of these fractional derivatives. And finally we propose alternative fractional derivative definition.


2003 ◽  
Vol 2003 (5) ◽  
pp. 315-325 ◽  
Author(s):  
Kostadin Trenčevski

We introduce a new approach to the fractional derivatives of the analytical functions using the Taylor series of the functions. In order to calculate the fractional derivatives off, it is not sufficient to know the Taylor expansion off, but we should also know the constants of all consecutive integrations off. For example, any fractional derivative ofexisexonly if we assume that thenth consecutive integral ofexisexfor each positive integern. The method of calculating the fractional derivatives very often requires a summation of divergent series, and thus, in this note, we first introduce a method of such summation of series via analytical continuation of functions.


2021 ◽  
Vol 18 ◽  
pp. 38
Author(s):  
V.F. Babenko ◽  
N.V. Parfinovich

New exact inequalities for Hadamard fractional derivatives of functions, defined on the half-line, are obtained.


Sign in / Sign up

Export Citation Format

Share Document