scholarly journals Iron ore sintering. Part 3: Automatic and control systems

DYNA ◽  
2015 ◽  
Vol 82 (190) ◽  
pp. 227-236 ◽  
Author(s):  
Alejandro Cores ◽  
Luis Felipe Verdeja ◽  
Serafín Ferreira ◽  
Íñigo Ruiz-Bustinza ◽  
Javier Mochón ◽  
...  

The sintering process involves a large number of parameters, more than 500, each of which exerts a greater or lesser influence and needs to be controlled, within the possible limits, in order to optimise productivity, process stability, and standardise the composition and quality of the sinter produced. To comply with environmental legislation, a pollution control system must monitor the particle matter and gases generated and emitted into the atmosphere by the sinter plant. Automation and control systems are vital tools to assist plant operators in the monitoring of each stage of the sinter production process.

2020 ◽  
Vol 844 ◽  
pp. 114-123
Author(s):  
Volodymyr Bochka ◽  
Artem Sova ◽  
Lina Kieush ◽  
Oleksandr Hryshyn ◽  
Alisa Dvoiehlazova

This paper reveals that obtaining high-quality sinter, improved or stabilized by its size and strength, is a challenge to be solved by embracing both the formation of sinter with the strong structure and the optimal mineralogical composition of its bonds during the preparation of the sintering blend. The existing technological schemes of iron ore sintering do not allow producing the sinter where the amounts of fines with 0-0.5 mm of fraction would be less than the typical amounts of 8.1-20.4%. Therefore, the study to establish how the blend preparation with the preliminary made composites affects the parameters of iron ore sintering process and the quality of the resulting sinter has been carried out. It has determined that the use of separate pre-granulation has commonly positive effects on the process of blend preparation, namely it significantly decreases the amount of non-granulated fraction of 0-1 mm and increases the equivalent diameter of the granules, reduces the standard deviation and variation coefficient, indicating the more homogeneous granulometric composition of raw granules.


Minerals ◽  
2019 ◽  
Vol 9 (2) ◽  
pp. 128
Author(s):  
Roland Mežibrický ◽  
Mária Fröhlichová ◽  
Róbert Findorák ◽  
Valerie Goettgens

During the iron ore sintering process, two types of particles are present in the sinter bed: (1) fines, which are actively taking part in melting and the formation of secondary phases, and (2) coarse ores, which are partially interacting with the surrounding melt. The quality of the final sinter is particularly determined by the secondary phases and their bonding ability. Due to chemical differences between the fines and coarse particles, knowing the overall chemical composition of the sintering blend is not sufficient to estimate the final sinter microstructure. In this study, different ore types were used to prepare iron-rich, high-alumina, and high-silica blends, which were sintered in a laboratory sinter pot to investigate the behavior of fine as well as coarse particles. As a result, very different sinter matrices formed depending on the useful basicity in each sinter. The density, mineral nature, and the gangue of the ore affected coarse ore assimilation.


Sign in / Sign up

Export Citation Format

Share Document