scholarly journals PLS Generalized Linear Regression and Kernel Multilogit Algorithm (KMA) for Microarray Data Classification Problem

2020 ◽  
Vol 43 (2) ◽  
pp. 233-249
Author(s):  
Adolphus Wagala ◽  
Graciela González-Farías ◽  
Rogelio Ramos ◽  
Oscar Dalmau

This study involves the implentation of the extensions of the partial least squares generalized linear regression (PLSGLR) by combining  it with logistic regression and  linear  discriminant analysis,  to  get a  partial least  squares generalized linear  regression-logistic regression model (PLSGLR-log),  and a partial least squares generalized linear regression-linear discriminant analysis model (PLSGLRDA). A comparative  study  of  the obtained  classifiers with   the   classical  methodologies like  the k-nearest  neighbours (KNN), linear   discriminant  analysis  (LDA),   partial  least  squares discriminant analysis (PLSDA),  ridge  partial least squares (RPLS), and  support vector machines(SVM)  is  then  carried  out.    Furthermore,  a  new  methodology known as kernel multilogit algorithm (KMA) is also implemented and its performance compared with those of the other classifiers. The KMA emerged as the best classifier based  on the lowest  classification error  rates  compared to  the  others  when  applied   to  the  types   of data   are considered;  the  un- preprocessed and preprocessed.

2019 ◽  
Vol 2 (3) ◽  
pp. 250-263 ◽  
Author(s):  
Peter Boedeker ◽  
Nathan T. Kearns

In psychology, researchers are often interested in the predictive classification of individuals. Various models exist for such a purpose, but which model is considered a best practice is conditional on attributes of the data. Under certain conditions, linear discriminant analysis (LDA) has been shown to perform better than other predictive methods, such as logistic regression, multinomial logistic regression, random forests, support-vector machines, and the K-nearest neighbor algorithm. The purpose of this Tutorial is to provide researchers who already have a basic level of statistical training with a general overview of LDA and an example of its implementation and interpretation. Decisions that must be made when conducting an LDA (e.g., prior specification, choice of cross-validation procedures) and methods of evaluating case classification (posterior probability, typicality probability) and overall classification (hit rate, Huberty’s I index) are discussed. LDA for prediction is described from a modern Bayesian perspective, as opposed to its original derivation. A step-by-step example of implementing and interpreting LDA results is provided. All analyses were conducted in R, and the script is provided; the data are available online.


2021 ◽  
Vol 9 (1) ◽  
pp. 140-147
Author(s):  
Chong Lu ◽  
Yan Ren ◽  
Liying Han

In this paper, a dataset for Xinjiang minority ethnical groups is introduced, and implementation of two dimensional Linear Discriminant Analysis (2DLDA) and two-dimensional Partial Least Squares (2DPLS) is investigated. Two important topics for face recognition and the ethnicity recognition are investigated for database with different image resolutions. Experiments show that 2DLDA performances better than 2DPLS on our face database.


2015 ◽  
Vol 8 (7) ◽  
pp. 41 ◽  
Author(s):  
Zahra Shayan ◽  
Naser Mohammad Gholi Mezerji ◽  
Leila Shayan ◽  
Parisa Naseri

<p><strong>BACKGROUND: </strong>Logistic regression (LR) and linear discriminant analysis (LDA) are two popular<strong> </strong>statistical models for prediction of group membership. Although they are very similar, the LDA makes more assumptions about the data. When categorical and continuous variables used simultaneously, the optimal choice between the two models is questionable. In most studies, classification error (CE) is used to discriminate between subjects in several groups, but this index is not suitable to predict the accuracy of the outcome. The present study compared LR and LDA models using classification indices.</p><p><strong>METHODS:</strong> This cross-sectional study selected 243 cancer patients. Sample sets of different sizes (n = 50, 100, 150, 200, 220) were randomly selected and the CE, B, and Q classification indices were calculated by the LR and LDA models.</p><p><strong>RESULTS:</strong> CE revealed the a lack of superiority for one model over the other, but the results showed that LR performed better than LDA for the B and Q indices in all situations. No significant effect for sample size on CE was noted for selection of an optimal model. Assessment of the accuracy of prediction of real data indicated that the B and Q indices are appropriate for selection of an optimal model.</p><p><strong>CONCLUSION:</strong> The results of this study showed that LR performs better in some cases and LDA in others when based on CE. The CE index is not appropriate for classification, although the B and Q indices performed better and offered more efficient criteria for comparison and discrimination between groups.</p>


Sign in / Sign up

Export Citation Format

Share Document