scholarly journals Dental Pulp Regeneration: Insights from Biological Processes

2017 ◽  
Vol 20 (1) ◽  
pp. 10-16
Author(s):  
Cristina Retana-Lobo DDS, MSD

One of the major approaches on dentistry research in this century is the development of biological strategies (tissue engineering) to regenerate/ biomineralize lost dental tissues. During dentin-pulp regeneration, the interaction between stem cells, signaling molecules, biomaterials and the microenvironment in the periapical area drives the process for dental pulp tissue engineering.  Understanding the signaling mechanisms and interactions involved with the biological process for the formation of a new tissue, is essential. The knowledge of the micro-environment is the key for the application of tissue engineering.  The present article is a short review of the current state of this topic, with the purpose of showing insights of pulp regeneration.

2017 ◽  
Vol 20 (1) ◽  
pp. 10-16
Author(s):  
Cristina Retana-Lobo DDS, MSD

One of the major approaches on dentistry research in this century is the development of biological strategies (tissue engineering) to regenerate/ biomineralize lost dental tissues. During dentin-pulp regeneration, the interaction between stem cells, signaling molecules, biomaterials and the microenvironment in the periapical area drives the process for dental pulp tissue engineering.  Understanding the signaling mechanisms and interactions involved with the biological process for the formation of a new tissue, is essential. The knowledge of the micro-environment is the key for the application of tissue engineering.  The present article is a short review of the current state of this topic, with the purpose of showing insights of pulp regeneration.


2018 ◽  
Vol 14 (5) ◽  
pp. 668-676 ◽  
Author(s):  
Tomoatsu Kaneko ◽  
Bin Gu ◽  
Phyo Pyai Sone ◽  
Su Yee Myo Zaw ◽  
Hiroki Murano ◽  
...  

Odontology ◽  
2016 ◽  
Vol 105 (4) ◽  
pp. 392-397 ◽  
Author(s):  
Takafumi Ito ◽  
Tomoatsu Kaneko ◽  
Yukiko Sueyama ◽  
Reika Kaneko ◽  
Takashi Okiji

2018 ◽  
Vol 24 (3-4) ◽  
pp. 234-244 ◽  
Author(s):  
Kerstin M. Galler ◽  
Ferdinand P. Brandl ◽  
Susanne Kirchhof ◽  
Matthias Widbiller ◽  
Andreas Eidt ◽  
...  

2014 ◽  
Vol 40 (4) ◽  
pp. S41-S45 ◽  
Author(s):  
Kerstin M. Galler ◽  
Andreas Eidt ◽  
Gottfried Schmalz

2011 ◽  
Vol 22 (1) ◽  
pp. 3-13 ◽  
Author(s):  
Flávio Fernando Demarco ◽  
Marcus Cristian Muniz Conde ◽  
Bruno Neves Cavalcanti ◽  
Luciano Casagrande ◽  
Vivien Thiemy Sakai ◽  
...  

Dental pulp is a highly specialized mesenchymal tissue that has a limited regeneration capacity due to anatomical arrangement and post-mitotic nature of odontoblastic cells. Entire pulp amputation followed by pulp space disinfection and filling with an artificial material cause loss of a significant amount of dentin leaving as life-lasting sequelae a non-vital and weakened tooth. However, regenerative endodontics is an emerging field of modern tissue engineering that has demonstrated promising results using stem cells associated with scaffolds and responsive molecules. Thereby, this article reviews the most recent endeavors to regenerate pulp tissue based on tissue engineering principles and provides insightful information to readers about the different aspects involved in tissue engineering. Here, we speculate that the search for the ideal combination of cells, scaffolds, and morphogenic factors for dental pulp tissue engineering may be extended over future years and result in significant advances in other areas of dental and craniofacial research. The findings collected in this literature review show that we are now at a stage in which engineering a complex tissue, such as the dental pulp, is no longer an unachievable goal and the next decade will certainly be an exciting time for dental and craniofacial research.


Author(s):  
Jiahui Fu ◽  
Jianfeng Chen ◽  
Wenjun Li ◽  
Xiaomin Yang ◽  
Jingyan Yang ◽  
...  

Native dental pulp extracellular matrix (DPEM) has proven to be an effective biomaterial for dental pulp regeneration. However, as a significant extracellular matrix glycoprotein, partial laminins were lost during the decellularization process, which were essential for odontoblast differentiation. Thereby, this study investigated the feasibility of LN supplementation to improve the surface of DPEM for odontoblast layer regeneration. The influences of laminin on cell adhesion and odontogenic differentiation were evaluated in vitro. Then, we fabricated laminin-modified DPEM based on the physical coating strategy and observed the location and persistency of laminin coating by immunofluorescent staining. Finally, laminin-modified DPEM combined with treated dentin matrix (TDM) was transplanted in orthotopic jaw bone of beagles (n = 3) to assess the effect of LNs on dental pulp tissue regeneration. The in vitro results showed that laminins could improve the adhesion of dental pulp stem cells (DPSCs) and promoted DPSCs toward odontogenic differentiation. Continuous odontoblastic layer-like structure was observed in laminin-modified DPEM group, expressing the markers for odontoblastogenesis, dentine matrix protein-1 (DMP-1) and dentin sialophosphoprotein (DSPP). Overall, these studies demonstrate that the supplementation of laminins to DPEM contributes to the odontogenic differentiation of cells and to the formation of odontoblast layer in dental pulp regeneration.


2015 ◽  
Vol 41 (10) ◽  
pp. 1711-1717 ◽  
Author(s):  
Cevat Erisken ◽  
Dilhan M. Kalyon ◽  
Jian Zhou ◽  
Sahng G. Kim ◽  
Jeremy J. Mao

Author(s):  
Priyadarshni Bindal ◽  
Noor H. Abu Kasim ◽  
Thamil Selvee Ramasamy ◽  
Ali Dabbagh ◽  
Keyvan Moharamzadeh ◽  
...  

2020 ◽  
Vol 36 (2) ◽  
pp. e47-e58 ◽  
Author(s):  
Hossein E. Jazayeri ◽  
Su-Min Lee ◽  
Lauren Kuhn ◽  
Farahnaz Fahimipour ◽  
Mohammadreza Tahriri ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document