Viscoelastic Properties of Dental Pulp Tissue and Ramifications on Biomaterial Development for Pulp Regeneration

2015 ◽  
Vol 41 (10) ◽  
pp. 1711-1717 ◽  
Author(s):  
Cevat Erisken ◽  
Dilhan M. Kalyon ◽  
Jian Zhou ◽  
Sahng G. Kim ◽  
Jeremy J. Mao
2017 ◽  
Vol 20 (1) ◽  
pp. 10-16
Author(s):  
Cristina Retana-Lobo DDS, MSD

One of the major approaches on dentistry research in this century is the development of biological strategies (tissue engineering) to regenerate/ biomineralize lost dental tissues. During dentin-pulp regeneration, the interaction between stem cells, signaling molecules, biomaterials and the microenvironment in the periapical area drives the process for dental pulp tissue engineering.  Understanding the signaling mechanisms and interactions involved with the biological process for the formation of a new tissue, is essential. The knowledge of the micro-environment is the key for the application of tissue engineering.  The present article is a short review of the current state of this topic, with the purpose of showing insights of pulp regeneration.


Author(s):  
Jiahui Fu ◽  
Jianfeng Chen ◽  
Wenjun Li ◽  
Xiaomin Yang ◽  
Jingyan Yang ◽  
...  

Native dental pulp extracellular matrix (DPEM) has proven to be an effective biomaterial for dental pulp regeneration. However, as a significant extracellular matrix glycoprotein, partial laminins were lost during the decellularization process, which were essential for odontoblast differentiation. Thereby, this study investigated the feasibility of LN supplementation to improve the surface of DPEM for odontoblast layer regeneration. The influences of laminin on cell adhesion and odontogenic differentiation were evaluated in vitro. Then, we fabricated laminin-modified DPEM based on the physical coating strategy and observed the location and persistency of laminin coating by immunofluorescent staining. Finally, laminin-modified DPEM combined with treated dentin matrix (TDM) was transplanted in orthotopic jaw bone of beagles (n = 3) to assess the effect of LNs on dental pulp tissue regeneration. The in vitro results showed that laminins could improve the adhesion of dental pulp stem cells (DPSCs) and promoted DPSCs toward odontogenic differentiation. Continuous odontoblastic layer-like structure was observed in laminin-modified DPEM group, expressing the markers for odontoblastogenesis, dentine matrix protein-1 (DMP-1) and dentin sialophosphoprotein (DSPP). Overall, these studies demonstrate that the supplementation of laminins to DPEM contributes to the odontogenic differentiation of cells and to the formation of odontoblast layer in dental pulp regeneration.


2017 ◽  
Vol 20 (1) ◽  
pp. 10-16
Author(s):  
Cristina Retana-Lobo DDS, MSD

One of the major approaches on dentistry research in this century is the development of biological strategies (tissue engineering) to regenerate/ biomineralize lost dental tissues. During dentin-pulp regeneration, the interaction between stem cells, signaling molecules, biomaterials and the microenvironment in the periapical area drives the process for dental pulp tissue engineering.  Understanding the signaling mechanisms and interactions involved with the biological process for the formation of a new tissue, is essential. The knowledge of the micro-environment is the key for the application of tissue engineering.  The present article is a short review of the current state of this topic, with the purpose of showing insights of pulp regeneration.


2016 ◽  
Vol 138 (6) ◽  
Author(s):  
Burak Ozcan ◽  
Ece Bayrak ◽  
Cevat Erisken

Availability of material as well as biological properties of native tissues is critical for biomaterial design and synthesis for regenerative engineering. Until recently, selection of biomaterials and biomolecule carriers for dental pulp regeneration has been done randomly or based on experience mainly due to the absence of benchmark data for dental pulp tissue. This study, for the first time, characterizes the linear viscoelastic material functions and compressive properties of human dental pulp tissue harvested from wisdom teeth, under oscillatory shear and compression. The results revealed a gel-like behavior of the pulp tissue over the frequency range of 0.1–100 rps. Uniaxial compression tests generated peak normal stress and compressive modulus values of 39.1±20.4 kPa and 5.5±2.8 kPa, respectively. Taken collectively, the linear viscoelastic and uniaxial compressive properties of the human dental pulp tissue reported here should enable the better tailoring of biomaterials or biomolecule carriers to be employed in dental pulp regeneration.


2017 ◽  
Vol 43 (4) ◽  
pp. 568-574 ◽  
Author(s):  
Evandro Piva ◽  
Susan A. Tarlé ◽  
Jacques E. Nör ◽  
Duohong Zou ◽  
Elizabeth Hatfield ◽  
...  

Author(s):  
Saaid Ayesh Alshehadat ◽  
Htun Aung Thu ◽  
Suzina Sheikh Abdul Hamid ◽  
Asma Abdullah Nurul ◽  
Samsudin Abdul Rani ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document