Investigation of the Dynamic Capillary Pressure During Displacement Process in Fractured Tight Sandstone Reservoirs

Author(s):  
Ying Li ◽  
Feihang Liu ◽  
Haitao Li ◽  
Shengnan Chen ◽  
Jie Zeng ◽  
...  
2018 ◽  
Vol 141 (2) ◽  
Author(s):  
Leng Tian ◽  
Bo Feng ◽  
Sixu Zheng ◽  
Daihong Gu ◽  
Xiaoxing Ren ◽  
...  

In this paper, a pragmatic and consistent framework has been developed and validated to accurately predict reservoir performance in tight sandstone reservoirs by coupling the dynamic capillary pressure with gas production models. Theoretically, the concept of pseudo-mobile water saturation, which is defined as the water saturation between irreducible water saturation and cutoff water saturation, is proposed to couple dynamic capillary pressure and stress-induced permeability to form an equation matrix that is solved by using the implicit pressure and explicit saturations (IMPES) method. Compared with the conventional methods, the newly developed model predicts a lower cumulative gas production but a higher reservoir pressure and a higher flowing bottomhole pressure at the end of the stable period. Physically, a higher gas production rate induces a greater dynamic capillary pressure, while both cutoff water saturation and stress-induced permeability impose a similar impact on the dynamic capillary pressure, though the corresponding degrees are varied. Due to the dynamic capillary pressure, pseudo-mobile water saturation controlled by the displacement pressure drop also affects the gas production. The higher the gas production rate is, the greater the effect of dynamic capillary pressure on the cumulative gas production, formation pressure, and flowing bottomhole pressure will be. By taking the dynamic capillary pressure into account, it can be more accurate to predict the performance of a gas reservoir and the length of stable production period, allowing for making more reasonable development schemes and thus improving the gas recovery in a tight sandstone reservoir.


2013 ◽  
Vol 295-298 ◽  
pp. 2736-2739
Author(s):  
Hai Yan Hu

Overpressure is often encountered in the Jurassic tight and the overpressure is closely associated with gas generation. The pressure transfer from the over-pressurized mudstones to adjacent tight sandstones might occur through overpressure induced-fractures. The fine-grained coal containing Jurassic sandstone is sensitive to compaction, and the porosity decreases dramatically with the increase of overlying load. As gas migrates into the tight sandstones, it must overcome the capillary pressure which is greater than the hydrostatic pressure. The gas charging pressure in the tight sandstone must be higher than the capillary pressure, resulting in an overpressure buildup within the tight sandstones. Gas shows, low permeability and strong diagenesis in the overpressure of the tight sandstone system have been observed. Additionally, capillary seals are identified as playing an important role in the mechanism of the overpressure formation in tight sandstone reservoirs. Overpressure might be a driving force to create induced fractures in the interval, which has applications for crossing-formation migration and gas accumulation.


2018 ◽  
Vol 49 (10) ◽  
pp. 1043-1058 ◽  
Author(s):  
Mi Liu ◽  
Ranhong Xie ◽  
Hongjun Xu ◽  
Songtao Wu ◽  
Rukai Zhu ◽  
...  

Capillarity ◽  
2020 ◽  
Vol 3 (2) ◽  
pp. 28-35 ◽  
Author(s):  
Yixin Cao ◽  
Mingming Tang ◽  
Qian Zhang ◽  
Jiafan Tang ◽  
Shuangfang Lu

2021 ◽  
Author(s):  
Lijun Guan ◽  
Wei Zhang ◽  
Ping Zhang ◽  
Yuqing Yang ◽  
Weiping Cui ◽  
...  

Abstract Tight sandstone reservoirs characterization and evaluation is very difficult based on conventional well log data owing to the extremely low porosity and permeability, and strong heterogeneity. The main accumulation spaces of conventional reservoirs are intergranular pores, and the pore size is the main controlling factor of permeability. However, besides intergranular pores, fractures play much greater important role in accumulating hydrocarbon, improving the pore connectivity and pore structure in tight sandstone reservoirs. Hence, it should be accurately predicted the pore structure dredged by fractures to improve the characterization of tight sandstone reservoirs. Generally, nuclear magnetic resonance (NMR) logging is an effective method to evaluate formation pore structure. However, it cannot be well used in fractured reservoirs because the NMR T2 spectra has no any response for fractures with width <2mm. The borehole electrical image log is usable in characterizing fractured reservoirs. The pore spectrum, which is extracted from the borehole electrical image log, can be used to qualitatively reflect the pore size. Hence, it will play an important role in fractured reservoirs pore structure characterization. In this study, based on the comprehensive analysis of the pore spectra, the corresponding mercury injection capillary pressure (MICP) data and pore-throat radius distributions acquired from core samples, a relationship that connects the 1/POR and capillary pressure (Pc) is proposed. Established a model based on formation classification to transform porosity spectrum into pseudo capillary pressure curve. In addition, a Swanson parameter-based permeability prediction model is also developed to extract fractured formation permeability. Meanwhile, to verify the superiority and otherness of borehole electrical image and NMR log, the model that evaluated reservoirs pore structure from NMR log is also established. Based on the application of the proposed method and models in actual formations, the evaluated pore structure parameters and permeabilities from two types of well log data are compared. The results illustrates that in formations with relative good pore structure, the predicted pore structure parameters and permeabilities from these two types of well log data agree well with the drill stem testing data and core-derived result. However, in low permeability sandstones with relatively poor pore structure, the porosity spectra can be well used to evaluate the pore structure, whereas the characterized pore structure from NMR log is overestimated. With the comprehensive research of reservoirs pore structure and permeability, the fractured tight sandstone formations with development value are precisely identified. This proposed method has greatest advantages that the pore structure of fractured reservoirs can be characterized, and the contribution of fractures to the pore connectivity and permeability can be quantified. it is usable in tight sandstone reservoirs validity prediction.


2014 ◽  
Vol 1010-1012 ◽  
pp. 1387-1390
Author(s):  
Xiao Lei Wei ◽  
Xin Li ◽  
Rui Xu ◽  
Ling Ling Zhi

It is of great importance in classifying reservoirs and establishing the relationship of pore structure and productivity for formation evaluation and reserves estimation. In this study, based on the morphological characteristics and the difference of pore structure evaluation parameters acquired from mercury injection capillary pressure (MICP) data, which were obtained from the experimental results of 20 core samples drilled from Chang 6 tight sandstone Formation of north Ordos basin, the Chang 6 formation is classified into three types, and the corresponding average MICP curves of every types are obtained. These were usable in determining the potential target formation and predicting the productivity in tight sandstone reservoirs.


2014 ◽  
Vol 7 (1) ◽  
pp. 55-63 ◽  
Author(s):  
Haiyong Zhang ◽  
Shunli He ◽  
Chunyan Jiao ◽  
Guohua Luan ◽  
Shaoyuan Mo

Sign in / Sign up

Export Citation Format

Share Document