Development of a Machine-Learning-Based Workflow for Well Completion Optimization in Permian Basin

Author(s):  
Leizheng Wang (Kevin) ◽  
Julia Gale ◽  
Alexander Y. Sun
2021 ◽  
Author(s):  
Robert Shelley ◽  
Oladapo Oduba ◽  
Howard Melcher

Abstract The subject of this paper is the application of a unique machine learning approach to the evaluation of Wolfcamp B completions. A database consisting of Reservoir, Completion, Frac and Production information from 301 Multi-Fractured Horizontal Wolfcamp B Completions was assembled. These completions were from a 10-County area located in the Texas portion of the Permian Basin. Within this database there is a wide variation in completion design from many operators; lateral lengths ranging from a low of about 4,000 ft to a high of almost 15,000 ft, proppant intensities from 500 to 4,000 lb/ft and frac stage spacing from 59 to 769 ft. Two independent self-organizing data mappings (SOM) were performed; the first on completion and frac stage parameters, the second on reservoir and geology. Characteristics for wells assigned to each SOM bin were determined. These two mappings were then combined into a reservoir type vs completion type matrix. This type of approach is intended to remove systemactic errors in measuement, bias and inconsistencies in the database so that more realistic assessments about well performance can be made. Production for completion and reservoir type combinations were determined. As a final step, a feed forward neural network (ANN) model was developed from the mapped data. This model was used to estimate Wolfcamp B production and economics for completion and frac designs. In the performance of this project, it became apparent that the incorporation of reservoir data was essential to understanding the impact of completion and frac design on multi-fractured horizontal Wolfcamp B well production and economic performance. As we would expect, wells with the most permeability, higher pore pressure, effective porosity and lower water saturation have the greatest potential for hydrocarbon production. The most effective completion types have an optimum combination of proppant intensity, fluid intensity, treatment rate, frac stage spacing and perforation clustering. This paper will be of interest to anyone optimizing hydraulically fractured Wolfcamp B completion design or evaluating Permian Basin prospects. Also, of interest is the impact of reservoir and completion characteristics such as permeability, porosity, water saturation, pressure, offset well production, proppant intensity, fluid intensity, frac stage spacing and lateral length on well production and economics. The methodology used to evaluate the impact of reservoir and completion parameters for this Wolfcamp project is unique and novel. In addition, compared to other methodologies, it is low cost and fast. And though the focus of this paper is on the Wolfcamp B Formation in the Midland Basin, this approach and workflow can be applied to any formation in any Basin, provided sufficient data is available.


2018 ◽  
Author(s):  
Bruno de Ribet ◽  
Peter Wang ◽  
Monte Meers ◽  
Howard Renick ◽  
Russ Creath ◽  
...  

2021 ◽  
Author(s):  
Kriti Singh ◽  
Sai Yalamarty ◽  
Curtis Cheatham ◽  
Khoa Tran ◽  
Greg McDonald

Abstract This paper is a follow up to the URTeC (2019-343) publication where the training of a Machine Learning (ML) model to predict rate of penetration (ROP) is described. The ML model gathers recent drilling parameters and approximates drilling conditions downhole to predict ROP. In real time, the model is run through an optimization sweep by adjusting parameters which can be controlled by the driller. The optimal drilling parameters and modeled ROP are then displayed for the driller to utilize. The ML model was successfully deployed and tested in real time in collaboration with leading shale operators in the Permian Basin. The testing phase was split in two parts, preliminary field tests and trials of the end-product. The key learnings from preliminary field tests were used to develop an integrated driller's dashboard with optimal drilling parameters recommendations and situational awareness tools for high dysfunction and procedural compliance which was used for designed trials. The results of field trials are discussed where subject well ROP was improved between 19-33% when comparing against observation/control footage. The overall ROP on subject wells was also compared against offset wells with similar target formations, BHAs, and wellbore trajectories. In those comparisons against qualified offsets, ROP was improved by as little as 5% and as much as 33%. In addition to comparing ROP performance, results from post-run data analysis are also presented. Detailed drilling data analytics were performed to check if using the recommendations during the trial caused any detrimental effects such as divergence in directional trends or high lateral or axial vibrations. The results from this analysis indicate that the measured downhole axial and lateral vibrations were in the safe zone. Also, no significant deviations in rotary trends were observed.


2019 ◽  
Author(s):  
Paolo Dell'Aversana ◽  
Raffaele Servodio ◽  
Franco Bottazzi ◽  
Carlo Carniani ◽  
Germana Gallino ◽  
...  

2021 ◽  
Vol 73 (04) ◽  
pp. 41-41
Author(s):  
Doug Lehr

In the 2020 Completions Technology Focus, I stated that digitization will forever change how the most complex problems in our industry are solved. And, despite another severe downturn in the upstream industry, data science continues to provide solutions for complex unconventional well problems. Casing Damage Casing collapse is an ongoing problem and almost always occurs in the heel of the well. It prevents passage of frac plugs and milling tools. Forcing a frac plug through the collapsed section damages the plug, predisposing it to failure, which leads to more casing damage and poor stimulation. One team has developed a machine-learning (ML) model showing a positive correlation between zones with high fracturing gradients and collapsed casing. The objective is a predictive tool that enables a completion design that avoids these zones. Fracture-Driven Interactions (FDIs) Can Be Avoided in Real Time Pressurized fracturing fluids from one well can communicate with fractures in a nearby well or can intersect that well-bore. Such FDIs can occur while fracturing a child well and can negatively affect production in the parent well. FDIs are caused by well spacing, depletion, or completion design but, until recently, were not quickly diagnosed. Analytics and machine learning now are being used to analyze streaming data sets during a frac job to detect FDIs. A recently piloted detection system alerts the operator in real time, which enables avoidance of FDIs on the fly. Data Science Provides the Tools Analyzing casing damage and FDIs is a complex task involving large amounts of data already available or easily acquired. Tools such as ML perform the data analysis and enable decision making. Data science is enabling the unconventional “onion” to be peeled many layers at a time. Recommended additional reading at OnePetro: www.onepetro.org. SPE 199967 - Artificial Intelligence for Real-Time Monitoring of Fracture-Driven Interactions and Simultaneous Completion Optimization by Hayley Stephenson, Baker Hughes, et al. SPE 201615 - Novel Completion Design To Bypass Damage and Increase Reservoir Contact: A Middle Magdalena, Central Colombian Case History by Rosana Polo, Oxy, et al. SPE 202966 - Well Completion Optimization in Canada Tight Gas Fields Using Ensemble Machine Learning by Lulu Liao, Sinopec, et al.


Sign in / Sign up

Export Citation Format

Share Document