scholarly journals Descartes’ rule of signs, Rolle’s theorem and sequences of compatible pairs

2020 ◽  
Vol 57 (2) ◽  
pp. 165-186
Author(s):  
Hassen Cheriha ◽  
Yousra Gati ◽  
Vladimir Petrov Kostov

AbstractConsider the sequence s of the signs of the coefficients of a real univariate polynomial P of degree d. Descartes’ rule of signs gives compatibility conditions between s and the pair (r+,r−), where r+ is the number of positive roots and r− the number of negative roots of P. It was recently asked if there are other compatibility conditions, and the answer was given in the form of a list of incompatible triples (s; r+,r−) which begins at degree d = 4 and is known up to degree 8. In this paper we raise the question of the compatibility conditions for , where (resp.) is the number of positive (resp. negative) roots of the i-th derivative of P. We prove that up to degree 5, there are no other compatibility conditions than the Descartes conditions, the above recent incompatibilities for each i, and the trivial conditions given by Rolle’s theorem.

2021 ◽  
Vol 9 ◽  
Author(s):  
Colin Defant ◽  
Sam Hopkins

Abstract For a Weyl group W of rank r, the W-Catalan number is the number of antichains of the poset of positive roots, and the W-Narayana numbers refine the W-Catalan number by keeping track of the cardinalities of these antichains. The W-Narayana numbers are symmetric – that is, the number of antichains of cardinality k is the same as the number of cardinality $r-k$ . However, this symmetry is far from obvious. Panyushev posed the problem of defining an involution on root poset antichains that exhibits the symmetry of the W-Narayana numbers. Rowmotion and rowvacuation are two related operators, defined as compositions of toggles, that give a dihedral action on the set of antichains of any ranked poset. Rowmotion acting on root posets has been the subject of a significant amount of research in the recent past. We prove that for the root posets of classical types, rowvacuation is Panyushev’s desired involution.


Author(s):  
Salvatore Sessa

AbstractThe thermodynamic compatibility defined by the Drucker postulate applied to a phenomenological hysteretic material, belonging to a recently formulated class, is hereby investigated. Such a constitutive model is defined by means of a set of algebraic functions so that it does not require any iterative procedure to compute the response and its tangent operator. In this sense, the model is particularly feasible for dynamic analysis of structures. Moreover, its peculiar formulation permits the computation of thermodynamic compatibility conditions in closed form. It will be shown that, in general, the fulfillment of the Drucker postulate for arbitrary displacement ranges requires strong limitations of the constitutive parameters. Nevertheless, it is possible to determine a displacement compatibility range for arbitrary sets of parameters so that the Drucker postulate is fulfilled as long as the displacement amplitude does not exceed the computed threshold. Numerical applications are provided to test the computed compatibility conditions.


2004 ◽  
Vol 2004 (54) ◽  
pp. 2867-2893
Author(s):  
John Michael Nahay

We will determine the number of powers ofαthat appear with nonzero coefficient in anα-power linear differential resolvent of smallest possible order of a univariate polynomialP(t)whose coefficients lie in an ordinary differential field and whose distinct roots are differentially independent over constants. We will then give an upper bound on the weight of anα-resolvent of smallest possible weight. We will then compute the indicial equation, apparent singularities, and Wronskian of the Cockleα-resolvent of a trinomial and finish with a related determinantal formula.


2001 ◽  
Vol 53 (3) ◽  
pp. 470-488 ◽  
Author(s):  
Heinz H. Bauschke ◽  
Osman Güler ◽  
Adrian S. Lewis ◽  
Hristo S. Sendov

AbstractA homogeneous real polynomial p is hyperbolic with respect to a given vector d if the univariate polynomial t ⟼ p(x − td) has all real roots for all vectors x. Motivated by partial differential equations, Gårding proved in 1951 that the largest such root is a convex function of x, and showed various ways of constructing new hyperbolic polynomials. We present a powerful new such construction, and use it to generalize Gårding’s result to arbitrary symmetric functions of the roots. Many classical and recent inequalities follow easily. We develop various convex-analytic tools for such symmetric functions, of interest in interior-point methods for optimization problems over related cones.


Sign in / Sign up

Export Citation Format

Share Document