Thermodynamic compatibility conditions of a new class of hysteretic materials
AbstractThe thermodynamic compatibility defined by the Drucker postulate applied to a phenomenological hysteretic material, belonging to a recently formulated class, is hereby investigated. Such a constitutive model is defined by means of a set of algebraic functions so that it does not require any iterative procedure to compute the response and its tangent operator. In this sense, the model is particularly feasible for dynamic analysis of structures. Moreover, its peculiar formulation permits the computation of thermodynamic compatibility conditions in closed form. It will be shown that, in general, the fulfillment of the Drucker postulate for arbitrary displacement ranges requires strong limitations of the constitutive parameters. Nevertheless, it is possible to determine a displacement compatibility range for arbitrary sets of parameters so that the Drucker postulate is fulfilled as long as the displacement amplitude does not exceed the computed threshold. Numerical applications are provided to test the computed compatibility conditions.