The fiancée is unduly beautiful

2015 ◽  
Vol 6 (1) ◽  
pp. 55-62
Author(s):  
A. Kerekes ◽  
A. Zöld

According to the Energy Performance of Buildings Directive, a significant share of the energy consumption of nearly zero energy buildings is covered from renewable energy. Biomass is considered as one of the most important renewable sources. It is promising since most of the Member states apply very low primary energy conversion factors for it. Nevertheless, the primary energy need is not as favourable as the conversion factors suggest, due to the efficiency of the biomass boilers for all over the year which depends on the changing load. Heating systems supplied with biomass boilers need buffer storage tanks which further decrease the efficiency of the system. The nearly zero energy buildings, especially those of residential use exhibit more stable load due to the lower heat loss and the overwhelming share of the net energy need of domestic hot water supply.

Tehnika ◽  
2021 ◽  
Vol 76 (2) ◽  
pp. 246-253
Author(s):  
Igor Milović

European legislation EPBD [1] (Energy Performance of Buildings Directive) makes nearly Zero-Energy Buildings (nZEBs) a standard by 2020. The technology is already available and proven; however, the large-scale uptake of nZEB construction and renovation will be a big challenge for all market actors and stakeholders involved. A substantial gap in reliable data on current market activities makes it difficult for policy-makers to evaluate the success of their policies and measures [2]. As concrete numeric thresholds or ranges are not defined in the EPBD, these requirements let a lot of space for own interpretation and thus allow Member States (MSs) to define their nZEB in a very flexible way taking into account their country specific climate conditions, primary energy factors, ambition levels, calculation methodologies and building traditions. This is also the main reason why existing nZEB definitions differ significantly from country to country. It is thus a challenging task to find a common denominator for defining an nZEB on a European scale [1,2].


Buildings ◽  
2018 ◽  
Vol 8 (10) ◽  
pp. 143 ◽  
Author(s):  
Juan Garcia ◽  
Lukas Kranzl

Since buildings account for 40% of total energy consumption and 36% of CO2 emissions in the European Union (EU), the directive 2010/31/EU “Energy Performance of Buildings Directive (EPDB)” among other legal provisions concerning the reduction of energy consumption of buildings has been enforced. According to this legislation, all new buildings must be nearly zero energy buildings “nZEB” by 31 December 2020 (public buildings by 31 December 2018). Nonetheless, the assessment of the “high energy performance” of a building is ambiguous and a cross country comparison seems to be intricate since different national building codes and nZEB definitions employ different energy indicators and methods. This paper delves into the question of how do the ambition levels of “nZEB” definitions and the transposition of the Directive 2010/31/EU into national law differ in four selected EU Countries: Austria, Germany, Spain, and England (as part of UK). The energy performance of some exemplary buildings is assessed by means of a simplified MATLAB model that is based on the norm DIN V-18599. The results drawn from this work show how diverse are building codes scopes and national “nZEB” definitions. Only 9 of the 36 studied cases of residential buildings obtain consistently the “nZEB” compliance status in all four selected countries. The results show that climate conditions, energy requirements, primary energy factors, ambition levels, and calculation methodologies lead to the problem of an uneven cross-country comparison. Moreover, primary energy consumption [kWh/m2a] set as the main quantitative energy indicator by the directive 2010/31/EU might not be the most suitable one for an EU level comparison.


2016 ◽  
Vol 861 ◽  
pp. 198-205
Author(s):  
Anton Pitonak ◽  
Martin Lopusniak

In the members states of the European Union, portion of buildings in the total consumption of energy represents 40%, and their portion in CO2 emissions fluctuates around 35%. The European Union is trying to protect the environment by reducing energy demand and releasing CO2 emissions into the air. Energy performance is the quantity of energy, which is necessary for heating and domestic hot water production, for cooling and ventilation and for lighting. Based on results of energy performance, individual buildings are classified into energy classes A to G. A global indicator (primary energy) is the decisive factor for final evaluation of the building. The new building must meet minimum requirements for energy performance, i.e. it must be classified to energy class A1 since 2016, and to energy class A0 since 2020. The paper analyses effect of the use of different resources of heat in a family house designed according to requirements valid since 2020, and its subsequent classification into an energy class.


Energies ◽  
2019 ◽  
Vol 12 (5) ◽  
pp. 895 ◽  
Author(s):  
Ilaria Ballarini ◽  
Giovanna De Luca ◽  
Argun Paragamyan ◽  
Anna Pellegrino ◽  
Vincenzo Corrado

Directive 2010/31/EU promotes the refurbishment of existing buildings to change them into nearly zero-energy buildings (nZEBs). Within this framework, it is of crucial importance to guarantee the best trade-off between energy performance and indoor environmental quality (IEQ). The implications of a global refurbishment scenario on thermal and visual comfort are assessed in this paper pertaining to an existing office building. The retrofit actions applied to achieve the nZEB target consist of a combination of envelope and technical building systems refurbishment measures, involving both HVAC and lighting. Energy and comfort calculations were carried out through dynamic simulation using Energy Plus and DIVA, for the thermal and visual performance assessments, respectively. The results point out that energy retrofit actions on the building envelope would lead to significant improvements in the thermal performance, regarding both energy savings (−37% of the annual primary energy for heating) and thermal comfort. However, a daylighting reduction would occur with a consequent higher electricity demand for lighting (36%). The research presents a detailed approach applicable to further analyses aimed at optimizing the energy efficiency measures in order to reduce the imbalance between visual and thermal comfort and to ensure the best performance in both domains.


Energies ◽  
2020 ◽  
Vol 13 (22) ◽  
pp. 6026
Author(s):  
Sergio Gómez Melgar ◽  
Antonio Sánchez Cordero ◽  
Marta Videras Rodríguez ◽  
José Manuel Andújar Márquez

The construction sector is a great contributor to global warming both in new and existing buildings. Minimum energy buildings (MEBs) demand as little energy as possible, with an optimized architectural design, which includes passive solutions. In addition, these buildings consume as low energy as possible introducing efficient facilities. Finally, they produce renewable energy on-site to become zero energy buildings (ZEBs) or even plus zero energy buildings (+ZEB). In this paper, a deep analysis of the energy use and renewable energy production of a social dwelling was carried out based on data measurements. Unfortunately, in residential buildings, most renewable energy production occurs at a different time than energy demand. Furthermore, energy storage batteries for these facilities are expensive and require significant maintenance. The present research proposes a strategy, which involves rescheduling energy demand by changing the habits of the occupants in terms of domestic hot water (DHW) consumption, cooking, and washing. Rescheduling these three electric circuits increases the usability of the renewable energy produced on-site, reducing the misused energy from 52.84% to 25.14%, as well as decreasing electricity costs by 58.46%.


2014 ◽  
Vol 587-589 ◽  
pp. 224-227
Author(s):  
Zhi Jun Zhang

A zero-energy building, also known as a zero net energy (ZNE) building, net-zero energy building (NZEB), or net zero building, is a building with zero net energy consumption and zero carbon emissions annually. Buildings that produce a surplus of energy over the year may be called “energy-plus buildings” and buildings that consume slightly more energy than they produce are called “near-zero energy buildings” or “ultra-low energy houses”. Traditional buildings consume 40% of the total fossil fuel energy in the US and European Union and are significant contributors of greenhouse gases. The zero net energy consumption principle is viewed as a means to reduce carbon emissions and reduce dependence on fossil fuels and although zero energy buildings remain uncommon even in developed countries, they are gaining importance and popularity.


Energies ◽  
2020 ◽  
Vol 13 (21) ◽  
pp. 5531 ◽  
Author(s):  
Taro Mori ◽  
Yusuke Iwama ◽  
Hirofumi Hayama ◽  
Emad Mushtaha

Hot water supply is one of the leading consumers of energy in the building sector in cold climate areas. The use of woody biomass is effective in reducing CO2 emissions in hot-water supply systems. This report deals with a system that combines a wood pellet boiler (PB) and a heat pump system with CO2 (CO2HP) that is used in a facility for disabled people. The following research was conducted. The operation of a hybrid system combining a PB and CO2HPs was investigated. While operating the system, four specific operations were developed as countermeasures to save on costs and reduce system troubles while reducing CO2 emissions. The processes and results are introduced. Numerical simulations were carried out to optimize the operation. The hot water temperature, water volume, and hot water loads were simulated. The influence of the water volume ratio on the cost and primary energy consumption under the requirements for safe system operation was studied. The regional economic ripple effects (REREs) of this system were studied. The wood pellet boiler is not only a measure for reducing primary energy consumption but can also play an important role in a regional economy for sustainable development in countries that import energy resources such as Japan.


Sign in / Sign up

Export Citation Format

Share Document