scholarly journals Gender-related differences in frontal-parietal modular segregation and altered effective connectivity in internet gaming disorder

2021 ◽  
Vol 10 (1) ◽  
pp. 123-134
Author(s):  
Ningning Zeng ◽  
Min Wang ◽  
Hui Zheng ◽  
Jialin Zhang ◽  
Haohao Dong ◽  
...  

AbstractBackgroundAlthough previous studies have revealed gender-related differences in executive function in internet gaming disorder (IGD), neural mechanisms underlying these processes remain unclear, especially in terms of brain networks.MethodsResting-state fMRI data were collected from 78 subjects with IGD (39 males, 20.8 ± 2.16 years old) and 72 with recreational game use (RGU) (39 males, 21.5 ± 2.56 years old). By utilizing graph theory, we calculated participation coefficients among brain network modules for all participants and analyzed the diagnostic-group-by-gender interactions. We further explored possible causal relationships between networks through spectral dynamic causal modeling (spDCM) to assess differences in between-network connections.ResultsCompared to males with RGU, males with IGD demonstrated reduced modular segregation of the frontal-parietal network (FPN). Male IGD subjects also showed increased connections between the FPN and cingulo-opercular network (CON); however, these differences were not found in female subjects. Further spDCM analysis indicated that the causal influence from CON to FPN in male IGD subjects was enhanced relative to that of RGU males, while this influence was relatively reduced in females with IGD.ConclusionsThese results suggest poor modular segmentation of the FPN and abnormal FPN/CON connections in males with IGD, suggesting a mechanism for male vulnerability to IGD. An increased “bottom-up” effect from the CON to FPN in male IGD subjects could reflect dysfunction between the brain networks. Different mechanisms may underlie in IGD, suggesting that different interventions may be optimal in males and females with IGD.

2020 ◽  
Vol 9 (2) ◽  
pp. 298-311 ◽  
Author(s):  
Ji-Won Chun ◽  
Chang-Hyun Park ◽  
Jin-Young Kim ◽  
Jihye Choi ◽  
Hyun Cho ◽  
...  

AbstractBackground and aimsAlthough the Internet has provided convenience and efficiency in many areas of everyday life, problems stemming from Internet use have also been identified, such as Internet gaming disorder (IGD). Internet addiction, which includes IGD, can be viewed as a behavioral addiction or impulse control disorder. This study investigated the altered functional and effective connectivity of the core brain networks in individuals with IGD compared to healthy controls (HCs).MethodsForty-five adults with IGD and 45 HCs were included in this study. To examine the brain networks related to personality traits that influence problematic online gaming, the left and right central executive network (CEN) and the salience network (SN) were included in the analysis. Also, to examine changes in major brain network topographies, we analyzed the default mode network (DMN).ResultsIGD participants showed lower functional connectivity between the dorsal lateral prefrontal cortex (DLPFC) and other regions in the CEN than HC participants during resting state. Also, IGD participants revealed reduced functional connectivity between the dorsal anterior cingulate cortex and other regions in the SN and lower functional connectivity in the medial prefrontal cortex of the anterior DMN. Notably, in IGD individuals but not HC individuals, there was a positive correlation between IGD severity and effective connectivity and a positive correlation between reward sensitivity and effective connectivity within the ventral striatum of the SN.ConclusionsProblematic online gaming was associated with neurofunctional alterations, impairing the capacity of core brain networks.


2020 ◽  
pp. 1-13 ◽  
Author(s):  
Guang-Heng Dong ◽  
Min Wang ◽  
Hui Zheng ◽  
Ziliang Wang ◽  
Xiaoxia Du ◽  
...  

Abstract Background Studies of Internet gaming disorder (IGD) suggest an imbalanced relationship between cognitive control and reward processing in people with IGD. However, it remains unclear how these two systems interact with each other, and whether they could serve as neurobiological markers for IGD. Methods Fifty IGD subjects and matched individuals with recreational game use (RGU) were selected and compared when they were performing a cue-craving task. Regions of interests [anterior cingulate cortex (ACC), lentiform nucleus] were selected based on the comparison between brain responses to gaming-related cues and neutral cues. Directional connectivities among these brain regions were determined using Bayesian estimation. We additionally examined the posterior cingulate cortex (PCC) in a separate analysis based on data implicating the PCC in craving in addiction. Results During fixed-connectivity analyses, IGD subjects showed blunted ACC-to-lentiform and lentiform-to-ACC connectivity relative to RGU subjects, especially in the left hemisphere. When facing gaming cues, IGD subjects trended toward lower left-hemispheric modulatory effects in ACC-to-lentiform connectivity than RGU subjects. Self-reported cue-related craving prior to scanning correlated inversely with left-hemispheric modulatory effects in ACC-to-lentiform connectivity. Conclusions The results suggesting that prefrontal-to-lentiform connectivity is impaired in IGD provides a possible neurobiological mechanism for difficulties in controlling gaming-cue-elicited cravings. Reduced connectivity ACC-lentiform connectivity may be a useful neurobiological marker for IGD.


Author(s):  
Stefan Frässle ◽  
Samuel J. Harrison ◽  
Jakob Heinzle ◽  
Brett A. Clementz ◽  
Carol A. Tamminga ◽  
...  

Abstract“Resting-state” functional magnetic resonance imaging (rs-fMRI) is widely used to study brain connectivity. So far, researchers have been restricted to measures of functional connectivity that are computationally efficient but undirected, or to effective connectivity estimates that are directed but limited to small networks.Here, we show that a method recently developed for task-fMRI – regression dynamic causal modeling (rDCM) – extends to rs-fMRI and offers both directional estimates and scalability to whole-brain networks. First, simulations demonstrate that rDCM faithfully recovers parameter values over a wide range of signal-to-noise ratios and repetition times. Second, we test construct validity of rDCM in relation to an established model of effective connectivity, spectral DCM. Using rs-fMRI data from nearly 200 healthy participants, rDCM produces biologically plausible results consistent with estimates by spectral DCM. Importantly, rDCM is computationally highly efficient, reconstructing whole-brain networks (>200 areas) within minutes on standard hardware. This opens promising new avenues for connectomics.


2020 ◽  
Author(s):  
Shuer Ye ◽  
Min Wang ◽  
Qun Yang ◽  
Haohao Dong ◽  
Guang-Heng Dong

AbstractImportanceFinding the neural features that could predict internet gaming disorder severity is important in finding the targets for potential interventions using brain modulation methods.ObjectiveTo determine whether resting-state neural patterns can predict individual variations of internet gaming disorder by applying machine learning method and further investigate brain regions strongly related to IGD severity.DesignThe diagnostic study lasted from December 1, 2013, to November 20, 2019. The data were analyzed from December 31, 2019, to July 10, 2020.SettingThe resting-state fMRI data were collected at East China Normal University, Shanghai.ParticipantsA convenience sample consisting of 402 college students with diverse IGD severityMain Outcomes and MeasuresThe neural patterns were represented by regional homogeneity (ReHo) and the amplitude of low-frequency fluctuation (ALFF). Predictive model performance was assessed by Pearson correlation coefficient and standard mean squared error between the predicted and true IGD severity. The correlations between IGD severity and topological features (i.e., degree centrality (DC), betweenness centrality (BC), and nodal efficiency (NE)) of consensus highly weighted regions in predictive models were examined.ResultsThe final dataset consists of 402 college students (mean [SD] age, 21.43 [2.44] years; 239 [59.5%] male). The predictive models could significantly predict IGD severity (model based on ReHo: r = 0.11, p(r) = 0.030, SMSE = 3.73, p(SMSE) = 0.033; model based on ALFF: r=0.19, p(r) = 0.002, SMSE = 3.58, p(SMSE) = 0.002). The highly weighted brain regions that contributed to both predictive models were the right precentral gyrus and the left postcentral gyrus. Moreover, the topological properties of the right precentral gyrus were significantly correlated with IGD severity (DC: r = 0.16, p = 0.001; BC: r = 0.14, p = 0.005; NE: r = 0.15, p = 0.003) whereas no significant result was found for the left postcentral gyrus (DC: r = 0.02, p = 0.673; BC: r = 0.04, p = 0.432; NE: r = 0.02, p = 0.664).Conclusions and RelevanceThe machine learning models could significantly predict IGD severity from resting-state neural patterns at the individual level. The predictions of IGD severity deepen our understanding of the neural mechanism of IGD and have implications for clinical diagnosis of IGD. In addition, we propose precentral gyrus as a potential target for physiological treatment interventions for IGD.Key PointsQuestionCan machine learning algorithms predict internet gaming disorder (IGD) from resting-state neural patterns?FindingsThis diagnostic study collected resting-state fMRI data from 402 subjects with diverse IGD severity. We found that machine learning models based on resting-state neural patterns yielded significant predictions of IGD severity. In addition, the topological neural features of precentral gyrus, which is a consensus highly weighted region, is significantly correlated with IGD severity.MeaningThe study found that IGD is a distinctive disorder and its dependence severity could be predicted by brain features. The precentral gyrus and its connection with other brain regions could be view as targets for potential IGD intervention, especially using brain modulation methods.


2020 ◽  
Vol 9 (3) ◽  
pp. 589-597
Author(s):  
Junghan Lee ◽  
Deokjong Lee ◽  
Kee Namkoong ◽  
Young-Chul Jung

AbstractBackground and aimsThe clinical significance of Internet gaming disorder (IGD) is spreading worldwide, but its underlying neural mechanism still remains unclear. Moreover, the prevalence of IGD seems to be the highest in adolescents whose brains are in development. This study investigated the functional connectivity between large-scale intrinsic networks including default mode network, executive control network, and salience network. We hypothesized that adolescents with IGD would demonstrate different functional connectivity patterns among large-scale intrinsic networks, implying neurodevelopmental alterations, which might be associated with executive dysfunction.MethodsThis study included 17 male adolescents with Internet gaming disorder, and 18 age-matched male adolescents as healthy controls. Functional connectivity was examined using seed-to-voxel analysis and seed-to-seed analysis, with the nodes of large-scale intrinsic networks used as region of interests. Group independent component analysis was performed to investigate spatially independent network.ResultsWe identified aberrant functional connectivity of salience network and default mode network with the left posterior superior temporal sulcus (pSTS) in adolescents with IGD. Furthermore, functional connectivity between salience network and pSTS correlated with proneness to Internet addiction and self-reported cognitive problems. Independent component analysis revealed that pSTS was involved in social brain network.Discussion and conclusionsThe results imply that aberrant functional connectivity of social brain network with default mode network and salience network was identified in IGD that may be associated with executive dysfunction. Our results suggest that inordinate social stimuli during excessive online gaming leads to altered connections among large-scale networks during neurodevelopment of adolescents.


2020 ◽  
Author(s):  
Guang-Heng Dong ◽  
Haohao Dong ◽  
Min Wang ◽  
Jialin Zhang ◽  
Weiran Zhou ◽  
...  

AbstractBackgroundAnimal models suggest transitions from non-addictive to addictive behavioral engagement are associated with ventral-to-dorsal striatal shifts. However, few studies have examined such features in humans, especially in internet gaming disorder (IGD), a behavioral addiction.MethodsFour-hundred-and-eighteen subjects (174 with IGD; 244 with recreational game use (RGU)) were recruited. Resting-state fMRI data were collected and functional connectivity (FC) analyses were performed based on ventral and dorsal striatal seeds. Correlations and follow-up spectrum dynamic causal model (spDCM) analyses were performed to examine relationships between ventral/dorsal striatum to medial frontal gyrus (MFG) and IGD severity. Longitudinal data from 40 subjects (22 IGD; 18 RGU) were also analysed to investigate further.ResultsInteractions were observed between group (IGD, RGU) and striatal regions (ventral, dorsal). IGD relative to RGU subjects showed lower ventral-striatum-to-MFG (mostly involving supplementary motor area (SMA)) and higher dorsal-striatum-to-MFG functional connectivity. spDCM revealed that left dorsal-striatum-to-MFG connectivity was correlated with IGD severity. Longitudinal data further support for ventral-to-dorsal striatal MFG relationships in IGD.ConclusionsConsistent with animal models of substance addictions, ventral-to-dorsal striatal transitions in involvement coritico-striatal circuitry may underlie IGD and its severity. These findings suggest possible neurobiological mechanisms that may be targeted in treatments for IGD.


2016 ◽  
Vol 22 (4) ◽  
pp. 192-200 ◽  
Author(s):  
Chiao-Yun Chen ◽  
Ju-Yu Yen ◽  
Peng-Wei Wang ◽  
Gin-Chung Liu ◽  
Cheng-Fang Yen ◽  
...  

Aims: A possible addiction mechanism has been represented by altered functional connectivity (FC) in the resting state. The aim of this study was to evaluate the FCs of the insula and nucleus accumbens among subjects with Internet gaming disorder (IGD). Methods: We recruited 30 males with IGD and 30 controls and evaluated their FC using functional magnetic imaging scanning under resting, a state with relaxation, closed eyes, with inducement to think of nothing systematically, become motionless, and instructed not to fall asleep. Results: Subjects with IGD had a lower FC with the left insula over the left dorsolateral prefrontal cortex (DLPFC) and orbital frontal lobe and a higher FC with the insula with the contralateral insula than controls. The inter-hemispheric insula connectivity positively correlated with impulsivity. Further, they had lower FC with the left nucleus accumbens over the left DLPFC and with the right nucleus accumbens over the left DLPFC, and insula and a higher FC with that over the right precuneus. Conclusion: The elevated inter-hemispheric insula FC is found to be associated with impulsivity and might explain why it is involved in IGD. The attenuated frontostriatal suggests that the emotion-driven gaming urge through nucleus accumbens could not be well regulated by the frontal lobe of subjects with IGD.


2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Guang-Heng Dong ◽  
Haohao Dong ◽  
Min Wang ◽  
Jialin Zhang ◽  
Weiran Zhou ◽  
...  

AbstractAnimal models suggest transitions from non-addictive to addictive behavioral engagement are associated with ventral-to-dorsal striatal shifts. However, few studies have examined such features in humans, especially in internet gaming disorder (IGD), a proposed behavioral addiction. We recruited 418 subjects (174 with IGD; 244 with recreational game use (RGU)). Resting-state fMRI data were collected and functional connectivity analyses were performed based on ventral and dorsal striatal seeds. Correlations and follow-up spectrum dynamic causal model (spDCM) analyses were performed to examine relationships between the ventral/dorsal striatum and middle frontal gyrus (MFG). Longitudinal data were also analysed to investigate changes over time. IGD relative to RGU subjects showed lower ventral-striatum-to-MFG (mostly involving supplementary motor area (SMA)) and higher dorsal-striatum-to-MFG functional connectivity. spDCM revealed that left dorsal-striatum-to-MFG connectivity was correlated with IGD severity. Longitudinal data within IGD and RGU groups found greater dorsal striatal connectivity with the MFG in IGD versus RGU subjects. These findings suggest similar ventral-to-dorsal striatal shifts may operate in IGD and traditional addictions.


Sign in / Sign up

Export Citation Format

Share Document