Antiviral Activity of Silver Nanoparticles Immobilized onto Textile Fabrics Synthesized by Radiochemical Process

MRS Advances ◽  
2016 ◽  
Vol 1 (11) ◽  
pp. 705-710 ◽  
Author(s):  
Satoshi Seino ◽  
Yasuo Imoto ◽  
Tomoya Kosaka ◽  
Tomoki Nishida ◽  
Takashi Nakagawa ◽  
...  

ABSTRACTAntiviral activity of metallic Ag nanoparticles immobilized on textile fabrics were investigated. The Ag nanoparticles synthesized by radiochemical process are firmly immobilized on the surface of support textile fabrics of cotton. Small Ag particles of about 2–4 nm were observed together with relatively large particles of more than 10 nm. The Ag nanoparticles showed antiviral activity against Influenza A and Feline Calicivirus. The antiviral activity significantly depended on the concentration of the Eagle’s minimal essential medium. It was implied that the surface passivation by inhibitory agent lead to the deactivation of metallic Ag nanoparticles.

2011 ◽  
Vol 8 (4) ◽  
pp. 375-380 ◽  
Author(s):  
Oleg V. Ardashov ◽  
Vladimir V. Zarubaev ◽  
Anna A. Shtro ◽  
Dina V. Korchagina ◽  
Konstantin P. Volcho ◽  
...  

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Yu-Jen Chang ◽  
Cheng-Yun Yeh ◽  
Ju-Chien Cheng ◽  
Yu-Qi Huang ◽  
Kai-Cheng Hsu ◽  
...  

AbstractEradicating influenza A virus (IAV) is difficult, due to its genetic drift and reassortment ability. As the infectious cycle is initiated by the influenza glycoprotein, hemagglutinin (HA), which mediates the binding of virions to terminal sialic acids moieties, HA is a tempting target of anti-influenza inhibitors. However, the complexity of the HA structure has prevented delineation of the structural characterization of the HA protein–ligand complex. Our computational strategy efficiently analyzed > 200,000 records of compounds held in the United States National Cancer Institute (NCI) database and identified potential HA inhibitors, by modeling the sialic acid (SA) receptor binding site (RBS) for the HA structure. Our modeling revealed that compound NSC85561 showed significant antiviral activity against the IAV H1N1 strain with EC50 values ranging from 2.31 to 2.53 µM and negligible cytotoxicity (CC50 > 700 µM). Using the NSC85561 compound as the template to generate 12 derivatives, robust bioassay results revealed the strongest antiviral efficacies with NSC47715 and NSC7223. Virtual screening clearly identified three SA receptor binding site inhibitors that were successfully validated in experimental data. Thus, our computational strategy has identified SA receptor binding site inhibitors against HA that show IAV-associated antiviral activity.


2020 ◽  
Vol 11 ◽  
Author(s):  
Lianci Peng ◽  
Wenjuan Du ◽  
Melanie D. Balhuizen ◽  
Henk P. Haagsman ◽  
Cornelis A. M. de Haan ◽  
...  

2018 ◽  
Vol 2018 ◽  
pp. 1-10 ◽  
Author(s):  
Yongxiang Liu ◽  
Xiaoxiao Liu ◽  
Hongtao Kang ◽  
Xiaoliang Hu ◽  
Jiasen Liu ◽  
...  

Interferons (IFNs) can inhibit most, if not all, viral infections by eliciting the transcription of hundreds of interferon-stimulated genes (ISGs). Feline calicivirus (FCV) is a highly contagious pathogen of cats and a surrogate for Norwalk virus. Interferon efficiently inhibits the replication of FCV, but the mechanism of the antiviral activity is poorly understood. Here, we evaluated the anti-FCV activity of ten ISGs, whose antiviral activities were previously reported. The results showed that interferon regulatory factor 1 (IRF1) can significantly inhibit the replication of FCV, whereas the other ISGs tested in this study failed. Further, we found that IRF1 was localized in the nucleus and efficiently activated IFN-β and the ISRE promoter. IRF1 can trigger the production of endogenous interferon and the expression of ISGs, suggesting that IRF1 can positively regulate IFN signalling. Importantly, the mRNA and protein levels of IRF1 were reduced upon FCV infection, which may be a new strategy for FCV to evade the innate immune system. Finally, the antiviral activity of IRF1 against feline panleukopenia virus, feline herpesvirus, and feline infectious peritonitis virus was demonstrated. These data indicate that feline IRF1 plays an important role in regulating the host type I IFN response and inhibiting feline viral infections.


Food Control ◽  
2016 ◽  
Vol 60 ◽  
pp. 25-30 ◽  
Author(s):  
Dong Joo Seo ◽  
Su Been Jeon ◽  
Hyejin Oh ◽  
Bog-Hieu Lee ◽  
Sook-Young Lee ◽  
...  

2014 ◽  
Vol 5 ◽  
Author(s):  
Emanuel Haasbach ◽  
Carmen Hartmayer ◽  
Alice Hettler ◽  
Alicja Sarnecka ◽  
Ulrich Wulle ◽  
...  

2015 ◽  
Vol 90 (1) ◽  
pp. 22-32 ◽  
Author(s):  
Matthew D. J. Dicks ◽  
Caroline Goujon ◽  
Darja Pollpeter ◽  
Gilberto Betancor ◽  
Luis Apolonia ◽  
...  

ABSTRACTHuman myxovirus resistance 2 (MX2/MXB) is an interferon-stimulated gene (ISG) and was recently identified as a late postentry suppressor of human immunodeficiency virus type 1 (HIV-1) infection, inhibiting the nuclear accumulation of viral cDNAs. Although the HIV-1 capsid (CA) protein is believed to be the viral determinant of MX2-mediated inhibition, the precise mechanism of antiviral action remains unclear. The MX family of dynamin-like GTPases also includes MX1/MXA, a well-studied inhibitor of a range of RNA and DNA viruses, including influenza A virus (FLUAV) and hepatitis B virus but not retroviruses. MX1 and MX2 are closely related and share similar domain architectures and structures. However, MX2 possesses an extended N terminus that is essential for antiviral function and confers anti-HIV-1 activity on MX1 [MX1(NMX2)]. Higher-order oligomerization is required for the antiviral activity of MX1 against FLUAV, with current models proposing that MX1 forms ring structures that constrict around viral nucleoprotein complexes. Here, we performed structure-function studies to investigate the requirements for oligomerization of both MX2 and chimeric MX1(NMX2) for the inhibition of HIV-1 infection. The oligomerization state of mutated proteins with amino acid substitutions at multiple putative oligomerization interfaces was assessed using a combination of covalent cross-linking and coimmunoprecipitation. We show that while monomeric MX2 and MX1(NMX2) mutants are not antiviral, higher-order oligomerization does not appear to be required for full antiviral activity of either protein. We propose that lower-order oligomerization of MX2 is sufficient for the effective inhibition of HIV-1.IMPORTANCEInterferon plays an important role in the control of virus replication during acute infectionin vivo. Recently, cultured cell experiments identified human MX2 as a key effector in the interferon-mediated postentry block to HIV-1 infection. MX2 is a member of a family of large dynamin-like GTPases that includes MX1/MXA, a closely related interferon-inducible inhibitor of several viruses, including FLUAV, but not HIV-1. MX GTPases form higher-order oligomeric structures, and the oligomerization of MX1 is required for inhibitory activity against many of its viral targets. Through structure-function studies, we report that monomeric mutants of MX2 do not inhibit HIV-1. However, in contrast to MX1, oligomerization beyond dimer assembly does not seem to be required for the antiviral activity of MX2, implying that fundamental differences exist between the antiviral mechanisms employed by these closely related proteins.


2011 ◽  
Vol 78 (4) ◽  
pp. 951-955 ◽  
Author(s):  
Yoshie Fujimori ◽  
Tetsuya Sato ◽  
Taishi Hayata ◽  
Tomokazu Nagao ◽  
Mikio Nakayama ◽  
...  

ABSTRACTWe investigated the antiviral activity of nanosized copper(I) iodide (CuI) particles having an average size of 160 nm. CuI particles showed aqueous stability and generated hydroxyl radicals, which were probably derived from monovalent copper (Cu+). We confirmed that CuI particles showed antiviral activity against an influenza A virus of swine origin (pandemic [H1N1] 2009) by plaque titration assay. The virus titer decreased in a dose-dependent manner upon incubation with CuI particles, with the 50% effective concentration being approximately 17 μg/ml after exposure for 60 min. SDS-PAGE analysis confirmed the inactivation of the virus due to the degradation of viral proteins such as hemagglutinin and neuraminidase by CuI. Electron spin resonance (ESR) spectroscopy revealed that CuI generates hydroxyl radicals in aqueous solution, and radical production was found to be blocked by the radical scavengerN-acetylcysteine. Taken together, these findings indicate that CuI particles exert antiviral activity by generating hydroxyl radicals. Thus, CuI may be a useful material for protecting against viral attacks and may be suitable for applications such as filters, face masks, protective clothing, and kitchen cloths.


Sign in / Sign up

Export Citation Format

Share Document