Microstructural development in sol-gel derived lead zirconate titanate thin films: The role of precursor stoichiometry and processing environment

1996 ◽  
Vol 11 (8) ◽  
pp. 2076-2084 ◽  
Author(s):  
M. J. Lefevre ◽  
J. S. Speck ◽  
R. W. Schwartz ◽  
D. Dimos ◽  
S. J. Lockwood

The role of precursor stoichiometry and local firing environment on the microstructural development of sol-gel derived lead zirconate titanate (PZT) thin films was investigated. Typically, excess Pb is added to films to compensate for PbO volatilization during heat treatment. Here, it is shown that the use of stoichiometric precursors with either a PbO atmosphere powder or a PbO overcoat during the crystallization heat treatment is an attractive and viable alternative method for control of film stoichiometry. Using these approaches, we have fabricated single phase perovskite thin films with microstructures and electrical properties (Pr ∼ 36 μC/cm2 and Ec ∼ 45 kV /cm) comparable to those of films using optimized solution chemistries and excess Pb additions. The potential advantage of increasing PbO partial pressure, or activity, during firing versus excess Pb additions is discussed from the standpoint of a proposed crystallization scenario based on the kinetic competition between Pb loss and the nucleation and growth rates of the perovskite phase.

1995 ◽  
Vol 10 (12) ◽  
pp. 3149-3159 ◽  
Author(s):  
Ellen M. Griswold ◽  
L. Weaver ◽  
M. Sayer ◽  
I.D. Calder

The crystallization kinetics of the pyrochlore to perovskite phase transformation in lead zirconate titanate (PZT) thin films have been analyzed using rapid thermal processing (RTP). Sol-gel PZT thin films, fabricated on platinum electrodes, were annealed at 550 °C to 650 °C with hold times ranging from 1 s to 5 min. Glancing angle x-ray diffraction (XRD) was used for depth profiling to identify the location of phases in the films. Transmission electron microscopy (TEM) provided information on grain structure, nucleation, and growth. The phase information was correlated to the ferroelectric and dielectric properties. The perovskite phase nucleated in the pyrochlore phase throughout the film thickness, and at 650 °C the transformation was complete in 15 s. Fast growing (100) PZT nucleated at the platinum and consumed a small-grained matrix until a columnar structure was obtained. A ramp rate of 100 °C/s was sufficiently fast to prevent transformation during heating and allowed the direct application of an Avrami model for transformation kinetics. An activation energy of 610 kJ/mol was determined.


2003 ◽  
Vol 15 (5) ◽  
pp. 1147-1155 ◽  
Author(s):  
A. Wu ◽  
P. M. Vilarinho ◽  
I. Reaney ◽  
I. M. Miranda Salvado

1994 ◽  
Vol 17 (6) ◽  
pp. 1005-1014 ◽  
Author(s):  
S B Majumder ◽  
V N Kulkarni ◽  
Y N Mohapatra ◽  
D C Agrawal

2009 ◽  
Vol 113 (1) ◽  
pp. 135-139 ◽  
Author(s):  
Anirban Chowdhury ◽  
Mikael A. Khan ◽  
Craig James ◽  
Steven J. Milne

Sign in / Sign up

Export Citation Format

Share Document