pyrochlore phase
Recently Published Documents


TOTAL DOCUMENTS

192
(FIVE YEARS 26)

H-INDEX

21
(FIVE YEARS 2)

2021 ◽  
Vol 2086 (1) ◽  
pp. 012146
Author(s):  
A I Ivanina ◽  
D S Agafonova ◽  
N V Roshina ◽  
I A Lamkin

Abstract In this paper, by means of numerical simulations in the COMSOL Multiphysics software it’s demonstrated that Raman scattering enhancement can be achieved for the diagnosis of metal oxide films using spherical particles made of barium titanate with a 10-micron diameter sphere. The formation of photonic nanojet in the sphere/film/substrate system at different radiation wavelengths and microsphere refractive index, film, and substrate was studied. The optimal interval of the particle refractive index is n≈1.8-2 was determined, at which the gain occurs directly at the particle/film interface. It is shown that for the UV wavelength range of wavelengths and film thicknesses from 50 to 200 nm, the gain is maximum. For ZnO and PZT films in the perovskite phase, sitall and quartz are preferred as the substrate material, while for PZT in the pyrochlore phase, sapphire is preferred.


2021 ◽  
Vol 181 ◽  
pp. 111461
Author(s):  
E. Simondon ◽  
P.-F. Giroux ◽  
J. Ribis ◽  
G. Spartacus ◽  
L. Chaffron ◽  
...  

Author(s):  
Volodymyr Oleksiyovych Chyshkala ◽  
Serhii Volodymyrovych Lytovchenko ◽  
Edwin Spartakovych Gevorkyan ◽  
Volodymyr Pavlovych Nerubatskyi ◽  
Oksana Mykolaivna Morozova

The creation of new materials with predetermined properties is perhaps the mostimportant issue and problem of modern materials science. Increasingly harsh conditions for the useof materials in modern, and especially - promising technological processes, the need to ensure andimplement the safest conditions for humanity and the environment of modern industrial production,the importance and increasing role of economic factors – all these factors necessitate improvingknown and creating new materials, as well as technologies for their production and use. Furthereconomically justified, socially attractive and technologically safe use of nuclear technologies andoperation of modern complex technical facilities, which undoubtedly include nuclear power devices,further development of nuclear and in the future thermonuclear energy is impossible withoutmodernization.The article implements the method of electron beam heating of a mixture of yttrium andzirconium oxides for the synthesis of complex oxides. The initial mixture contained ingredients in anamount corresponding to the compound Y2Zr2O7. The mixture was heated in a tantalum containeralmost to the melting point of tantalum (2915 C). The high temperature of the process is provided bythe use of a system with a plasma electron emitter. The purpose of the vacuum high-temperature effect on the powder mixture was to implement conditions sufficient to initiate reactions for the synthesis ofcomplex oxides. The analysis of the obtained samples recorded after the initial high-temperaturetreatment a fluorite-type phase (Y, Zr) Ox with a lattice parameter of 5.2 Å and technologicalimpurities of tantalum oxide. After additional annealing in air at 1200 C for 7 hours, another phasewith a lattice parameter of 5.17 Å was recorded, as well as impurities of tantalum oxide. The testedsynthesis conditions lead to the formation of multi-element oxides with a structure of only fluorite,pyrochlore phase in the heat is not detected.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Sheetal ◽  
C. S. Yadav

AbstractDy$$_{2}$$ 2 Zr$$_{2}$$ 2 O$$_{7}$$ 7 a disordered pyrochlore system, exhibits the spin freezing behavior under the application of the magnetic field. We have performed detailed magnetic studies of Dy$$_{2-\textit{x}}$$ 2 - x La$$_\textit{x}$$ x Zr$$_{2}$$ 2 O$$_{7}$$ 7 to understand the evolution of the magnetic spin freezing in the system. Our studies suggest the stabilization of the pyrochlore phase with the substitution of non-magnetic La along with the biphasic mixture of fluorite and pyrochlore phases for the intermediate compositions. We observed that the spin freezing (T$$_{f}$$ f $$\sim$$ ∼ 17 K) at higher La compositions (1.5 $$\le$$ ≤ $$\textit{x}$$ x $$\le$$ ≤ 1.99) is similar to the field-induced spin freezing for low La compositions (0 $$\le$$ ≤ $$\textit{x}$$ x $$\le$$ ≤ 0.5) and the well-known spin ice systems Dy$$_{2}$$ 2 Ti$$_{2}$$ 2 O$$_{7}$$ 7 and Ho$$_{2}$$ 2 Ti$$_{2}$$ 2 O$$_{7}$$ 7 . The low-temperature magnetic state for higher La compositions (1.5 $$\le$$ ≤ $$\textit{x}$$ x $$\le$$ ≤ 1.99) culminates into a spin-glass like state below 6 K. Cole–Cole plot and Casimir-du Pr$$\acute{e}$$ e ´ fit shows the narrow distribution of spin relaxation time in these compounds.


2021 ◽  
pp. 161598
Author(s):  
M.S. Lomakin ◽  
O.V. Proskurina ◽  
A.A. Sergeev ◽  
I.V. Buryanenko ◽  
V.G. Semenov ◽  
...  

2021 ◽  
Vol 8 (7) ◽  
pp. 202365
Author(s):  
Andrea Nesterović ◽  
Jelena Vukmirović ◽  
Ivan Stijepović ◽  
Marija Milanović ◽  
Branimir Bajac ◽  
...  

The influence of different processing parameters and various Ba 2+ addition (up to 10 mol%) on the structure and dielectric properties of Bi 0.5 Na 0.5 TiO 3 -BaTiO 3 (BNT-BT) ceramics was investigated. The powders were hydrothermally synthesized in the alkaline environment at 180°C for different time periods. X-ray diffraction confirmed the presence of dominant rhombohedral Bi 0.5 Na 0.5 TiO 3 phase and a small amount of secondary pyrochlore Bi 2 Ti 2 O 7 phase in the pure BNT powders. In addition, one-dimensional Na 2 Ti 2 O 7 structure was also observed in the powder hydrothermally treated for a long time (i.e. 48 h). The amount of secondary pyrochlore phase in the BNT-BT powders increases with the increase of Ba 2+ content. The synthesized powders were pressed into pellets and finally sintered at various temperatures up to 1150°C. High density (more than 90%TD) was obtained in all BNT-BT sintered samples. Optimal sintering parameters were chosen in order to obtain dense ceramics with the optimal phase composition. The temperature dependence of dielectric properties for the BNT-BT ceramics was also studied. Relaxor behaviour of BNT-based ceramics and broad transition peaks are evident in all samples. Dielectric constant up to 400 as well as an acceptable low dielectric loss at temperatures lower than 200°C were obtained in BNT-BT ceramics.


2021 ◽  
Vol 11 (13) ◽  
pp. 5939
Author(s):  
Alejandro Natoli ◽  
Jorge R. Frade ◽  
Aleksandr Bamburov ◽  
Agnieszka Żurawska ◽  
Aleksey Yaremchenko

Ceramics samples with the nominal composition [(ZrO2)0.95(Y2O3)0.05]1-x[PrOy]x and praseodymia contents of x = 0.05–0.15 were prepared by the direct firing of compacted 5YSZ + PrOy mixtures at 1450–1550 °C for 1–9 h and characterized for prospective applicability in reversible solid oxide cells. XRD and SEM/EDS analysis revealed that the dissolution of praseodymium oxide in 5YSZ occurs via the formation of pyrochlore-type Pr2Zr2O7 intermediate. Increasing PrOy additions results in a larger fraction of low-conducting pyrochlore phase and larger porosity, which limit the total electrical conductivity to 2.0–4.6 S/m at 900 °C and 0.28–0.68 S/m at 700 °C in air. A longer time and higher temperature of firing promotes the phase and microstructural homogenization of the ceramics but with comparatively low effect on density and conductivity. High-temperature processing leads to the prevailing 3+ oxidation state of praseodymium cations in fluorite and pyrochlore structures. The fraction of Pr4+ at 600–1000 °C in air is ≤2% and is nearly independent of temperature. 5YSZ ceramics with praseodymia additions remain predominantly oxygen ionic conductors, with p-type electronic contribution increasing with Pr content but not exceeding 2% for x = 0.15 at 700–900 °C. The average thermal expansion coefficients of prepared ceramics are in the range of 10.4–10.7 ppm/K.


Materials ◽  
2021 ◽  
Vol 14 (13) ◽  
pp. 3472
Author(s):  
Md Yusuf Ali ◽  
Hans Orthner ◽  
Hartmut Wiggers

A spray-flame reaction step followed by a short 1-h sintering step under O2 atmosphere was used to synthesize nanocrystalline cubic Al-doped Li7La3Zr2O12 (LLZO). The as-synthesized nanoparticles from spray-flame synthesis consisted of the crystalline La2Zr2O7 (LZO) pyrochlore phase while Li was present on the nanoparticles’ surface as amorphous carbonate. However, a short annealing step was sufficient to obtain phase pure cubic LLZO. To investigate whether the initial mixing of all cations is mandatory for synthesizing nanoparticulate cubic LLZO, we also synthesized Li free LZO and subsequently added different solid Li precursors before the annealing step. The resulting materials were all tetragonal LLZO (I41/acd) instead of the intended cubic phase, suggesting that an intimate intermixing of the Li precursor during the spray-flame synthesis is mandatory to form a nanoscale product. Based on these results, we propose a model to describe the spray-flame based synthesis process, considering the precipitation of LZO and the subsequent condensation of lithium carbonate on the particles’ surface.


MRS Advances ◽  
2021 ◽  
Author(s):  
D. A. Austin ◽  
M. Cole ◽  
M. C. Stennett ◽  
C. L. Corkhill ◽  
N. C. Hyatt

Abstract Refractory ‘stuffed’ pyrochlores such as Gd2TiO5 are of interest for nuclear applications, including as matrices for actinide disposition and as neutron absorbers in control rods. Here, we report the results of a preliminary comparative investigation of the synthesis of Gd2TiO5 by molten salt and conventional solid-state synthesis. We show that synthesis of Gd2TiO5 proceeds from the pyrochlore phase Gd2Ti2O7 which is first formed as a kinetic product. Molten salt synthesis afforded single phase Gd2TiO5 at 1300 °C in 2 h, via a template growth mechanism, and is effective for the synthesis of these refractory materials. This work demonstrates molten salt mediated synthesis of ‘stuffed’ pyrochlore for the first time. Graphic abstract


Sign in / Sign up

Export Citation Format

Share Document