Electron energy-loss study of titania particles

1998 ◽  
Vol 13 (6) ◽  
pp. 1679-1687
Author(s):  
R. J. Gonzalez ◽  
A. L. Ritter

Small titania particles, prepared by hydrolysis and condensation using in situ steric stabilization, have been studied by high-energy, transmission, electron energy-loss spectroscopy. Electron diffraction patterns and energy-loss spectra as a function of momentum transfer were measured for as-prepared particles (amorphous titania), particles annealed at 600 °C (primarily anatase), and particles annealed at 1000 °C (primarily rutile). The energy-loss spectra at low momentum disagreed with the loss function calculated from optical data (rutile) and disagreed with theory (rutile and anatase). The data was fit by an Elliot-like model for a resonant exciton interacting with a continuum of levels. The translational effective mass of the exciton derived from the fitting was quite large, indicating that it was self-trapped.

Author(s):  
T. Dewolf ◽  
D. Cooper ◽  
N. Bernier ◽  
V. Delaye ◽  
A. Grenier ◽  
...  

Abstract Forming and breaking a nanometer-sized conductive area are commonly accepted as the physical phenomenon involved in the switching mechanism of oxide resistive random access memories (OxRRAM). This study investigates a state-of-the-art OxRRAM device by in-situ transmission electron microscopy (TEM). Combining high spatial resolution obtained with a very small probe scanned over the area of interest of the sample and chemical analyses with electron energy loss spectroscopy, the local chemical state of the device can be compared before and after applying an electrical bias. This in-situ approach allows simultaneous TEM observation and memory cell operation. After the in-situ forming, a filamentary migration of titanium within the dielectric hafnium dioxide layer has been evidenced. This migration may be at the origin of the conductive path responsible for the low and high resistive states of the memory.


1995 ◽  
Vol 404 ◽  
Author(s):  
Kalpana S Katti ◽  
Maoxu Qian ◽  
Mehmet Sarikaya

AbstractIn this work a transmission electron microscopy (TEM) technique was used in obtaining local dielectric properties calculated from optical parameters for dynamic investigation of the effect of cubic to tetragonal phase transformation in barium titanate. In order to obtain in situ local dielectric during phase transformation, Kramers-Kronig relations were applied using the transmission electron energy loss (EELS) measurements. The optical excitations in the EELS spectra were consistent with the band structure results. The Re (1/ε) (real part of the dielectric function) obtained from the energy loss data indicated a change at the phase transformation. A broadening of the valence plasmon excitation suggested an order-disorder nature to the cubic to tetragonal transformation. In situ electron energy loss near edge structure (ELNES) studies from 500–700 eV energy range near the O-K edge exhibited a pre-edge feature that is associated with the Ti-L1, edge which further indicates an order-disorder nature to the phase transformation. The significance of the results is discussed.


Author(s):  
Shouleh Nikzad ◽  
Channing C. Ahn ◽  
Harry A. Atwater

The universality of reflection high energy electron diffraction (RHEED) as a structural tool during film growth by molecular beam epitaxy (MBE) brings with it the possibility for in situ surface chemical analysis via spectroscopy of the accompanying inelastically scattered electrons. We have modified a serial electron energy loss spectrometer typically used on an electron microscope to work with a 30 keV RHEED-equipped MBE growth chamber in order to determine the composition of GexSi1-x alloys by reflection electron energy loss (REELS) experiments. Similar work done in transmission electron microscopes has emphasized the surface sensitivity of this technique even though these experiments have never been done under ultra-high vacuum conditions. In this work, we are primarily concerned with the accuracy with which core losses can be used to determine composition during MBE growth.


2011 ◽  
Vol 17 (S2) ◽  
pp. 778-779 ◽  
Author(s):  
K Jungjohann ◽  
J Evans ◽  
I Arslan ◽  
N Browning

Extended abstract of a paper presented at Microscopy and Microanalysis 2011 in Nashville, Tennessee, USA, August 7–August 11, 2011.


Nanoscale ◽  
2014 ◽  
Vol 6 (12) ◽  
pp. 6585-6589 ◽  
Author(s):  
Chao Li ◽  
Bingzhe Wang ◽  
Yuan Yao ◽  
Guangzhe Piao ◽  
Lin Gu ◽  
...  

The structural transformation path of C60 nanowhiskers under an electric field studied using in situ TEM is reported.


Author(s):  
Ondrej L. Krivanek ◽  
Jonathan P. Ursin ◽  
Neil J. Bacon ◽  
George J. Corbin ◽  
Niklas Dellby ◽  
...  

An all-magnetic monochromator/spectrometer system for sub-30 meV energy-resolution electron energy-loss spectroscopy in the scanning transmission electron microscope is described. It will link the energy being selected by the monochromator to the energy being analysed by the spectrometer, without resorting to decelerating the electron beam. This will allow it to attain spectral energy stability comparable to systems using monochromators and spectrometers that are raised to near the high voltage of the instrument. It will also be able to correct the chromatic aberration of the probe-forming column. It should be able to provide variable energy resolution down to approximately 10 meV and spatial resolution less than 1 Å.


2001 ◽  
Vol 7 (S2) ◽  
pp. 134-135
Author(s):  
Tyrone L. Daulton ◽  
Brenda J. Little ◽  
Kristine Lowe ◽  
Joanne Jones-Meehan

The geochemistry and toxicity of chromium is controlled by its valence state. Chromium is a redox active 3d transition metal with a wide range (− to +6) of possible oxidation states; however only Cr(III) and Cr(VI) are stable. Hexavalent Cr(VI) can be readily reduced to the trivalent state by Fe2+, S2−, organic compounds, wetland plants, and several species of microorganisms. The associated mechanisms of Cr(VI) reduction are technologically and biologically important because they convert a toxic, mobile element into a less toxic, immobile form.Reduction of Cr(VI) by the bacterium, Shewanella oneidensis (previously classified Shewanella putrefaciens strain MR-1), was studied by absorption spectrophotometry and in-situ, environmental cell (EC) - transmission electron microscopy (TEM) coupled with electron energy loss spectroscopy (EELS). Shewanella oneidensis (S. oneidensis), a gram-negative, facultative bacterium is capable of respiring aerobically and anaerobically using a variety of compounds, including O2, Fe(III), Mn(IV), NO2−, NO3−, SO2, SO32−, thiosulfate (S2O32−), trimethyamine oxide, fumarate, U(VI), and Cr(VI) as terminal electron acceptors.


Sign in / Sign up

Export Citation Format

Share Document