Scanning Tunneling Microscopy and Spectroscopy Studies of Single Wall Carbon Nanotubes

1998 ◽  
Vol 13 (9) ◽  
pp. 2380-2388 ◽  
Author(s):  
Teri Wang Odom ◽  
Jin-Lin Huang ◽  
Philip Kim ◽  
Min Ouyang ◽  
Charles M. Lieber

Scanning tunneling microscopy and spectroscopy have been used to characterize the atomic structure and tunneling density of states of individual single wall carbon nanotubes (SWNT's) and ropes containing many SWNT's. Analysis of atomically resolved SWNT images shows that the nanotubes consist of a wide range of diameters and helicities with no one structure clearly dominant. Tunneling spectroscopy measurements made simultaneously on atomically resolved SWNT's exhibit semiconducting and metallic behavior that depend predictably on helicity and diameter. In addition the band gaps of the semiconducting tubes were also found to depend inversely on diameter. These results are compared to theoretical predictions, and the implications of these studies as well as important future directions are discussed.

Author(s):  
P.E. Russell ◽  
I.H. Musselman

Scanning tunneling microscopy (STM) has evolved rapidly in the past few years. Major developments have occurred in instrumentation, theory, and in a wide range of applications. In this paper, an overview of the application of STM and related techniques to polymers will be given, followed by a discussion of current research issues and prospects for future developments. The application of STM to polymers can be conveniently divided into the following subject areas: atomic scale imaging of uncoated polymer structures; topographic imaging and metrology of man-made polymer structures; and modification of polymer structures. Since many polymers are poor electrical conductors and hence unsuitable for use as a tunneling electrode, the related atomic force microscopy (AFM) technique which is capable of imaging both conductors and insulators has also been applied to polymers.The STM is well known for its high resolution capabilities in the x, y and z axes (Å in x andy and sub-Å in z). In addition to high resolution capabilities, the STM technique provides true three dimensional information in the constant current mode. In this mode, the STM tip is held at a fixed tunneling current (and a fixed bias voltage) and hence a fixed height above the sample surface while scanning across the sample surface.


2002 ◽  
Vol 507-510 ◽  
pp. 577-581 ◽  
Author(s):  
Z. Klusek ◽  
S. Datta ◽  
P. Byszewski ◽  
P. Kowalczyk ◽  
W. Kozlowski

ChemPhysChem ◽  
2007 ◽  
Vol 8 (7) ◽  
pp. 1037-1048 ◽  
Author(s):  
Gujin J. Su ◽  
Rocio Aguilar-Sanchez ◽  
Zhihai Li ◽  
Ilya Pobelov ◽  
Melanie Homberger ◽  
...  

1998 ◽  
Vol 13 (9) ◽  
pp. 2389-2395 ◽  
Author(s):  
D. L. Carroll ◽  
P. M. Ajayan ◽  
S. Curran

The recent application of tunneling probes in electronic structure studies of carbon nanotubes has proven both powerful and challenging. Using scanning tunneling microscopy (STM) and scanning tunneling spectroscopy (STS), local electronic properties in ordered aggregates of carbon nanotubes (multiwalled nanotubes and ropes of single walled nanotubes) have been probed. In this report, we present evidence for interlayer (concentric tube) interactions in multiwalled tubes and tube-tube interactions in singlewalled nanotube ropes. The spatially resolved, local electronic structure, as determined by the local density of electronic states, is shown to clearly reflect tube-tube interactions in both of these aggregate forms.


Sign in / Sign up

Export Citation Format

Share Document