Lead Zirconate Titanate Via Reaction Sintering of Hydroxide Precursors

1999 ◽  
Vol 14 (4) ◽  
pp. 1503-1509 ◽  
Author(s):  
Xue Junmin ◽  
John Wang

Lead zirconate titanate (PZT) has been successfully fabricated via a unique one-step sintering processing route, which is simpler than the traditional precursor-calcinationmilling- pelleting-sintering route and is able to deliver an enhanced sintered density at a much reduced sintering temperature. The hydroxide precursor was prepared by coprecipitation from a mixed nitrate solution containing Pb2+, Zr4+, and Ti4+ ions, and it was then compacted into pellets without being calcined at a low temperature. The precursor pellets were dehydrated at 400, 500, and 600 °C for 4 h, respectively, followed by an isostatic pressing at 350 MPa, prior to being sintered at a high temperature. Dehydration temperature has a large impact on the sintering behavior of these hydroxide-derived PZT ceramics. The PZT dehydrated at 400 °C was seriously cracked when sintered at temperatures ranging from 950 to 1150 °C, due to the incomplete dehydration. A sintered density of 99.2% theoretical density was obtained at 1050 °C for 2 h for the powder pellet dehydrated at 500 °C for 4 h. It exhibits a dielectric constant of 1024 and a dielectric loss of 2.1% at a frequency of 1 kHz at room temperature. A calcination at a too-high temperature, e.g., 600 °C, results in a reduction in the sinterability of the precipitate-derived PZT ceramic.

2007 ◽  
Vol 127 (2) ◽  
pp. 689-695 ◽  
Author(s):  
Marcos Anicete-Santos ◽  
Margarete S. Silva ◽  
Emmanuelle Orhan ◽  
Marcio S. Góes ◽  
Maria A. Zaghete ◽  
...  

Author(s):  
D. R. Tallant ◽  
R. W. Schwartz ◽  
B. A. Tuttle ◽  
S. C. Everist ◽  
B. C. Tafoya

Certain compositions and structural forms of lead zirconate titanate (PZT) materials have potential applications in microelectronics because of their ferroelectric properties. One such application is in the development of new types of non-volatile memories. PZT films are integrated into microcircuit components using sol-gel deposition techniques. The solution chemistry effects attendant to different sol-gel preparation procedures have been investigated by several researchers.We have used Raman spectroscopy both to characterize the metallo-organic species initially laid down on macroscopic platinum substrates during sol-gel processing and to follow the evolution of Pb-Zr-Ti oxide species through high temperature processing. The high temperature processing removes residual organics and creates Pb-Zr-Ti oxide structures that have ferroelectric properties. Low temperature pyrochlore structures, which are not ferroelectric, can be distinguished by Raman spectroscopy from tetragonal and pseudo-cubic/rhombohedral perovskite structures, which are usefully ferroelectric (Top Figure). In addition Raman spectroscopy has identified lead and titanium oxides that form as intermediates in the high temperature crystallization of ferroelectric PZT structures.


2007 ◽  
Vol 22 (12) ◽  
pp. 3448-3454 ◽  
Author(s):  
Talal M. Kamel ◽  
G. de With

The electrical behavior of modified soft lead zirconate titanate (PZT) ceramics has been studied as a function of temperature at different direct current (dc) electric fields and grain sizes. As ferroelectrics, such as PZT, are highly polarizable materials, poling, depolarization, and electric conduction contribute to the total electrical current, which leads to anomalous electrical behavior as a function of temperature. The PZT appeared to have a high pyroelectric coefficient, and it was found that the displacement current hides the conduction current near room temperature. The (long-time) steady-state electrical resistivity of the soft PZT used has a typical, relatively high value of 3.6 × 1012 Ω·cm near room temperature. The resistivity above the Curie temperature was two orders of magnitude lower than the room temperature. The resistivity decreases with increasing grain size probably due to the increased Pb vacancy concentration resulting as a consequence of a higher sintering temperature. The values of activation energies suggest that the charge carriers at high temperature are mainly oxygen vacancies. At intermediate temperature, the electrical behavior is controlled by the counteracting effect of depolarization and conduction. Considering the pyroelectric effect and the conduction, it was thus possible to explain the electrical behavior of this soft PZT ceramic over the temperature range considered.


AIP Advances ◽  
2011 ◽  
Vol 1 (4) ◽  
pp. 042169 ◽  
Author(s):  
Dilsom A. Sanchez ◽  
N. Ortega ◽  
Ashok Kumar ◽  
R. Roque-Malherbe ◽  
R. Polanco ◽  
...  

RSC Advances ◽  
2019 ◽  
Vol 9 (59) ◽  
pp. 34114-34119
Author(s):  
Quanliang Zhao ◽  
Tianyu Sheng ◽  
Lei Pang ◽  
Guangping He ◽  
Jiejian Di ◽  
...  

A giant negative ECE of a PNZST film with a high electrocaloric coefficient and coefficient of performance near room temperature.


Sign in / Sign up

Export Citation Format

Share Document