Raman analysis of microcircuits with lead zirconate titanate (PZT) films

Author(s):  
D. R. Tallant ◽  
R. W. Schwartz ◽  
B. A. Tuttle ◽  
S. C. Everist ◽  
B. C. Tafoya

Certain compositions and structural forms of lead zirconate titanate (PZT) materials have potential applications in microelectronics because of their ferroelectric properties. One such application is in the development of new types of non-volatile memories. PZT films are integrated into microcircuit components using sol-gel deposition techniques. The solution chemistry effects attendant to different sol-gel preparation procedures have been investigated by several researchers.We have used Raman spectroscopy both to characterize the metallo-organic species initially laid down on macroscopic platinum substrates during sol-gel processing and to follow the evolution of Pb-Zr-Ti oxide species through high temperature processing. The high temperature processing removes residual organics and creates Pb-Zr-Ti oxide structures that have ferroelectric properties. Low temperature pyrochlore structures, which are not ferroelectric, can be distinguished by Raman spectroscopy from tetragonal and pseudo-cubic/rhombohedral perovskite structures, which are usefully ferroelectric (Top Figure). In addition Raman spectroscopy has identified lead and titanium oxides that form as intermediates in the high temperature crystallization of ferroelectric PZT structures.

2000 ◽  
Vol 657 ◽  
Author(s):  
L.-P. Wang ◽  
R. Wolf ◽  
Q. Zhou ◽  
S. Trolier-McKinstry ◽  
R. J. Davis

ABSTRACTLead zirconate titanate (PZT) films are very attractive for microelectromechanical systems (MEMS) applications because of their high piezoelectric coefficients and good electromechanical coupling. In this work, wet-etch patterning of sol-gel PZT films for MEMS applications, typically with film thicknesses ranging from 2 to 10 microns, was studied. A two- step wet-etch process was developed. In the first step, 10:1 buffered HF is used to remove the majority of the film at room temperature. Then a solution of 2HCl:H2O at 45°C is used to remove metal-fluoride residues remaining from the first step. This enabled successful patterning of PZT films up to 8 microns thick. A high etch rate (0.13μm/min), high selectivity with respect to photoresist, and limited undercutting (2:1 lateral:thickness) were obtained. The processed PZT films have a relative permittivity of 1000, dielectric loss of 1.6%, remanent polarization (Pr) of 24μC/cm2, and coercive field (Ec) of 42.1kV/cm, all similar to those of unpatterned films of the same thickness.


2007 ◽  
Vol 14 (02) ◽  
pp. 229-234
Author(s):  
SARAWUT THOUNTOM ◽  
MANOCH NAKSATA ◽  
KENNETH MACKENZIE ◽  
TAWEE TUNKASIRI

Lead zirconate titanate (PZT) films with compositions near the morphotropic phase boundary were fabricated on Pt (111)/ Ti / SiO 2/ Si (100) using the triol sol–gel method. The effect of the pre-heating temperature on the phase transformations, microstructures, electrical properties, and ferroelectric properties of the PZT thin films was investigated. Randomly oriented PZT thin films pre-heated at 400°C for 10 min and annealed at 600°C for 30 min showed well-defined ferroelectric hysteresis loops with a remnant polarization of 26.57 μC/cm2 and a coercive field of 115.42 kV/cm. The dielectric constant and dielectric loss of the PZT films were 621 and 0.0395, respectively. The microstructures of the thin films are dense, crack-free, and homogeneous with fine grains about 15–20 nm in size.


2013 ◽  
Vol 4 (5) ◽  
pp. 400-404 ◽  
Author(s):  
D. A. Kiselev ◽  
M. V. Silibin ◽  
A. A. Dronov ◽  
S. A. Gavrilov ◽  
V. M. Roshchin ◽  
...  

1991 ◽  
Vol 243 ◽  
Author(s):  
Koichi Kugimiya ◽  
Ichiro Ueda ◽  
Kenji Iizima

AbstractAnomalous layers 20-40nm thick were found at the interfaces of lead zirconate-titanate films and Pt electrode films. Detailed study has shown evidence that absorption of PbO by Pt during sputtering resulted in a Pb deficiency in the PZT films and the formation of PbTi3O7 phase. The anomaly was also partly due to island formation at the initial PZT film deposition which allowed PbO to react with Pt films. The Pb controlled PZT films 50nm thick exhibited excellent ferroelectric properties comparable to thicker ones.


2002 ◽  
Vol 41 (Part 1, No. 11B) ◽  
pp. 6664-6668 ◽  
Author(s):  
Jiunnjye Tsaur ◽  
Zhan Jie Wang ◽  
Lulu Zhang ◽  
Masaaki Ichiki ◽  
Jiang Wen Wan ◽  
...  

2002 ◽  
Vol 17 (9) ◽  
pp. 2379-2385 ◽  
Author(s):  
Todd Myers ◽  
Parag Banerjee ◽  
Susmita Bose ◽  
Amit Bandyopadhyay

The physical layering of sol-gel-derived lead zirconate titanate (PZT) 52/48 and lanthanum-doped PZT (PLZT) 2/52/48 on platinized silicon substrates was investigated to determine if the ferroelectric properties and fatigue resistance could be influenced by different layering sequences. Monolithic thin films of PZT and PLZT were characterized to determine their ferroelectric properties. Sandwich structures of Pt/PZT/PLZT/PLZT/PZT/Au and Pt/PLZT/PZT/PZT/PLZT/Au and alternating structures of Pt/PZT/PLZT/PZT/PLZT/Au and Pt/PLZT/PZT/PLZT/PZT/Au were then fabricated and characterized. X-ray photoelectron spectroscopy depth profiles revealed that the layering sequence remained intact up to 700 °C for 45 min. It was found that the end layers in the multilayered films had a significant influence on the resulting hysteresis behavior and fatigue resistance. A direct correlation of ferroelectric properties and fatigue resistance can be made between the data obtained from the sandwiched structures and their end-layer monolithic thin film counterparts. Alternating structures also showed an improvement in the fatigue resistance while the polarization values remained between those for PZT and PLZT thin films.


2005 ◽  
Vol 20 (4) ◽  
pp. 882-888 ◽  
Author(s):  
Gun-Tae Park ◽  
Chee-Sung Park ◽  
Jong-Jin Choi ◽  
Hyoun-Ee Kim

Highly (100)- and (111)-oriented lead zirconate titanate (PZT) films with a thickness of 350 nm were deposited on platinized Si substrates through a single spinning of a PZT sol containing polyvinylpyrrolidone (PVP) as an additive. The crystallographic orientation of the film was strongly influenced by pyrolysis conditions after spin coating. When the spin-coated sol was pyrolyzed at temperatures above 320 °C for relatively long periods of time (>5 min), (111)-oriented film was formed after annealing at 700 °C for 10 min. On the other hand, when the same sol was pyrolyzed at 320 °C for short periods of time (<5 min), the film was strongly oriented to the (100) direction after annealing. Organic residues derived from PVP decomposition acted as nucleation sites for the (100) oriented grains during annealing after the pyrolysis. The effective d33 of the (100)-oriented PZT film (100 pC/N) was much higher than that of the (111)-oriented film (62 pC/N) with the same thickness.


1999 ◽  
Vol 596 ◽  
Author(s):  
Zhan-jie Wang ◽  
Ryutaro Maeda ◽  
Kaoru Kikuchi

AbstractLead zirconate titanate (PZT) thin films were fabricated by a three-step heat-treatment process which involves the addition of -10, 0 and 10 mol% excess Pb to the starting solution and spin coating onto Pt/Ti/SiO2/Si substrates. Crystalline phases as well as preferred orientations in PZT films were investigated by X-ray diffraction analysis (XRD). The microstructure and composition of the films were studied by scanning electron microscopy (SEM), transmission electron microscopy (TEM) and electron probe microanalysis (EPMA), respectively. The well-crystallized perovskite phase and the (100) preferred orientation were obtained by adding 10% excess Pb to the starting solution. It was found that PZT films to which 10% excess Pb was added had better electric properties. The remanent polarization and the coercive field of this film were 34.8 μC/cm2 and 41.7 kV/cm, while the dielectric constant and loss values measured at 1 kHz were approximately 1600 and 0.04, respectively. Dielectric and ferroelectric properties were correlated to the microstructure of the films.


Sign in / Sign up

Export Citation Format

Share Document